BIOKON – Das Bionik-Kompetenznetz

Nachrichten mit Nachhall

Das Schönste, was wir entdecken können, ist das Geheimnisvolle.
Albert Einstein, Physiker

Bionik ist das anwendungsorientierte Zusammenspiel von Wissenschaft und forschenden Unternehmen. Ihre Ergebnisse zielen auf Innovationen nach dem Vorbild der Natur. Sie sollen immer das Potenzial haben, Ideengeber für ein besseres Morgen zu sein. Solchen erfolgreichen Lösungen schaffen Nachrichten mit Nachhaltigkeit.

Print

Forschung // 2. Juli 2016

„Flower Power“: Photovoltaik nach dem Vorbild der Rose

Mit einer Oberfläche wie bei Pflanzen können Solarzellen mehr Licht aufnehmen und damit mehr Strom erzeugen. Forscher des Karlsruher Instituts für Technologie (KIT) reproduzierten die epidermalen Zellen von Rosenblütenblättern, die eine besonders starke Antireflexwirkung besitzen, und integrierten die transparente Nachbildung in eine organische Solarzelle. Dies führte zu einer relativen Erhöhung der Effizienz von zwölf Prozent. Darüber berichten die Wissenschaftler in der Zeitschrift Advanced Optical Materials (DOI: 10.1002/adom.201600046).

Photovoltaik ähnelt im Prinzip der von Pflanzen betriebenen Photosynthese: Lichtenergie wird absorbiert und in eine andere Form von Energie konvertiert. Dabei ist es wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkeln aufzunehmen, da sich der Winkel mit dem Sonnenstand ändert. Pflanzen haben dies in ihrer langen Evolution erreicht – Grund genug für Photovoltaikforscher, sich bei der Entwicklung von Solarzellen mit breitem Absorptionsspektrum und hoher Einfallswinkeltoleranz an der Natur zu orientieren.

Wissenschaftler am KIT und am Zentrum für Sonnenenergie­ und Wasserstoff-Forschung Baden­Württemberg (ZSW) schlagen nun in der Zeitschrift Advanced Optical Materials vor, das äußere Abschlussgewebe von Blättern höherer Pflanzen, die sogenannte Epidermis, in einer transparenten Schicht nachzubilden und diese in die Vorderseite von Solarzellen zu integrieren, um deren Effizienz zu steigern.

Zunächst untersuchten die Forscher am Lichttechnischen Institut (LTI), Institut für Mikrostrukturtechnik (IMT), Institut für Angewandte Physik (APH) und Zoologischen Institut (ZOO) des KIT sowie am ZSW die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und vor allem ihre Antireflexwirkung. Diese erwies sich als besonders stark bei Rosenblütenblättern, bei denen sie für stärkere Farbkontraste sorgt und damit die Chance auf Bestäubung erhöht. Wie die Wissenschaftler unter dem Elektronenmikroskop feststellten, besteht die Epidermis der Rosenblütenblätter aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen, zusätzlich gerippt durch zufällig platzierte Nanostrukturen.

Um die Struktur dieser epidermalen Zellen über eine größere Fläche exakt zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan, einem Polymer auf Siliziumbasis, drückten die so entstandene negative Struktur in einen optischen Kleber ein und ließen diesen unter UV-Betrahlung aushärten. „Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am LTI des KIT.

Die Wissenschaftler integrierten die transparente Nachbildung der Rosenblütenblätter-Epidermis in eine organische Solarzelle. Dadurch erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent (relative Steigerung). Bei sehr flachen Einfallswinkeln fiel die Effizienzsteigerung noch höher aus. Die Forscher führen die Steigerung vor allem auf die hervorragende richtungsunabhängige Antireflexwirkung der nachgebildeten Epidermis zurück. Diese kann die Oberflächenreflexion unter fünf Prozent halten, auch wenn der Lichteinfallswinkel fast 80 Grad beträgt. Darüber hinaus fungiert jede einzelne der nachgebildeten epidermalen Zellen als Mikrolinse, wie Untersuchungen mit einem Konfokal-Lasermikroskop zeigten. Der Mikrolinseneffekt verlängert den optischen Pfad innerhalb der Solarzelle, steigert die Licht-Materie-Interaktion und erhöht die Wahrscheinlichkeit, dass die Lichtteilchen absorbiert werden.

„Unsere Methode lässt sich sowohl auf weitere Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehrere Eigenschaften in einem Schritt zu übernehmen.“ Die Arbeit der Forscher wirft darüber hinaus eine grundlegende Frage auf: Welche Rolle spielt Unordnung in komplexen photonischen Strukturen? Zu dieser Frage laufen weitere Untersuchungen, von deren Ergebnissen die nächste Generation von Solarzellen profitieren könnte.

Originalpublikation:
Ruben Hünig, Adrian Mertens, Moritz Stephan, Alexander Schulz, Benjamin Richter, Michael Hetterich, Michael Powalla, Uli Lemmer, Alexander Colsmann, and Guillaume Gomard: Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin-Film Solar Cells. Advanced Optical Materials, 2016. DOI: 10.1002/adom.201600046

Quelle: Presseinformation 097/2016 des KIT.

>>

Aktuelles // 21. Juni 2016

„Mr. Lotuseffekt“ wird 70

Der Lotuseffekt war eine grundlegende Entdeckung in der Bionik. Er führte zu einem Paradigmenwechsel in bestimmten Bereichen der Materialwissenschaften und ermöglichte die Entwicklung superhydrophober bionischer Oberflächen. Das 20-jährige Jubiläum des Lotuseffekts selbst feiern wir zwar erst im kommenden Jahr, aber sein Entdecker, BIOKON-Ehrenmitglied Professor Dr. Wilhelm Barthlott, begeht heute seinen 70sten Geburtstag, zu dem wir herzlichst gratulieren.

Geboren in Forst, studierte Wilhelm Barthlott Biologie und Geographie an der Universität Heidelberg und arbeitete danach von 1974 bis 1981 als Wissenschaftlicher Assistent am Institut für Systematische Botanik und Pflanzengeographie der Universität Heidelberg. 1981 habilitierte er an derselben Universität und untersuchte das Phänomen der selbstreinigenden Oberflächen. Diese Arbeit führte schließlich zur Übertragung des Lotus-Effekts auf technische Anwendungen. Von 1982 bis 1985 war er Professor und Abteilungsleiter am Institut für Systematische Botanik und Pflanzengeographie der Freien Universität Berlin. 1985 wurde er an die Universität Bonn berufen, wo er bis 2002 Professor und Direktor am Botanischen Institut und des Botanischen Gartens der Rheinischen Friedrich-Wilhelms-Universität Bonn war. Nach Neustrukturierung und Modernisierung des wunderschönen botanischen Gartens und Umstrukturierung des botanischen Instituts 2002 war Professor Barthlott seit 2003 bis zu seiner Emeritierung im Juli 2011 Geschäftsführender Direktor des neugegründeten Nees-Instituts für Biodiversität der Pflanzen und Direktor der Botanischen Gärten der Universität.

Der von Professor Barthlott 1997 beschriebene Lotus-Effekt ist das Paradebeispiel der Bionik. Rund um diese bahnbrechende Innovation, die zu den 12 wichtigsten Innovationen aus Deutschland der letzten 50 Jahre gezählt wird, existieren mittlerweile rund 200 Nebeninnovationen. Kaum ein anderes Beispiel der Bionik hat einen vergleichbaren Weg in die Öffentlichkeit gefunden und sich dabei gleichzeitig oft weit vom eigentlichen Inhalt gelöst.

Doch auch wenn der Lotus-Effekt zweifellos seine bekannteste Entdeckung ist, sind seine Forschungsfelder sehr vielfältig, was auch die mehr als 400 Publikationen umfassende Publikationsliste belegt. Gerade hat er, gemeinsam mit Matthias Mail und Professor Christoph Neinhuis eine umfangreiche Arbeit zu superhydrophoben Oberflächen abgeschlossen, die innerhalb der nächsten Tage in einem Sonderband der Phil Trans A veröffentlicht wird.
Darüber hinaus hat Professor Barthlott auch etliche weitere Forschungsgebiete maßgeblich beeinflusst: von der Systematik der Kakteen, den pflanzlichen Oberflächen, über die Erforschung tropischer Inselberge, den Epiphyten von Regenwäldern, bis hin zur weltweiten Biodiversitätskartierung.

Mit dieser Vielzahl an Fragestellungen wird es einem natürlich nicht langweilig und so leitet Wilhelm Barthlott noch heute eine Arbeitsgruppe. Das Hauptaugenmerk liegt auf der Erforschung des Salvinia-Effekts. So gibt es auch immer wieder neue spannende Themen – gerade im letzten Jahr wurde ein völlig neuartiges biologisches Sensorsystem entdeckt und patentiert.

Wilhelm Barthlott ist Mitglied mehrerer nationaler und internationaler wissenschaftlicher Vereinigungen – darunter der Akademie der Wissenschaften und Literatur Mainz, der Nordrhein-Westfälischen Akademie der Wissenschaften Düsseldorf, der Deutschen Akademie der Naturforscher Leopoldina, sowie Foreign Member der Linnean Society London Komitees.
Er wurde mit verschiedenen angesehenen Preisen ausgezeichnet. Neben dem Karl Heinz Beckurts-Preis 1997 für wirtschaftlich innovative Grundlagenforschung sind dies insbesondere der der Philip-Morris-Forschungspreis 1999 sowie der Deutschen Umweltpreis ebenfalls 1999.

Aber Wilhelm Barthlott ist nicht nur ein erfolgreicher Forscher, sondern auch ein sehr erfolgreicher Lehrer. 140 Studenten haben Diplom- oder Staatsexamen bei ihm gemacht, 42 Doktoranden haben erfolgreich promoviert und 8 davon haben sich habilitiert und sind mittlerweile alle als Professoren an Hochschulen berufen.

Wir sind sicher, dass ihn das Interesse an der Biologie, vor allem aber an der Bionik noch sehr lange antreibt und Wilhelm Barthlott als aktiver Bioniker und wichtiger Teil des Bionik-Kompetenznetzes weiter herausragende Forschung betreibt, worauf wir uns voller Spannung freuen.
Zum 70. gratulieren wir herzlich.

>>

Aktuelles // 6. Juni 2016

Superhydrophobe Oberflächen – technische Anwendungen von zwei Best Practices der Bionik

Selbstreinigende Oberflächen (Lotus-Effekt®) und permanent unter Wasser lufthaltende Oberflächen (Salvinia-Effekt®) sind zwei Erfolgsgeschichten der Bionik, die zu einem Paradigmenwechsel in bestimmten Bereichen der Materialwissenschaften führten und die Entwicklung superhydrophober bionischer Oberflächen ermöglichten. Beide werden am 07. und 08.06.2016 auf der Woche der Umwelt im Park von Schloss Bellevue von BIOKON mit der Firma Sto SE & Co. KGaA und dem Nees-Institut für Biodiversität der Pflanzen der Universität Bonn präsentiert.
Entdeckt und beschrieben hat beide Effekte der Bonner Botaniker und Bioniker Professor Wilhelm Barthlott, Gründungs- und Ehrenmitglied von BIOKON. Sie beruhen auf dem Vorbild der mikro- und nanostrukturierten superhydrophoben Strukturen der Blätter der Lotus-Blume bzw. der elastischen superhydrophobe Schneebesen-Haare des Schwimmfarns Salvinia molesta.

Superhydrophob heißt, dass diese Oberflächen extrem wasserabweisend sind. Auf Grundlage der Forschungsarbeiten Professor Barthlotts ausgerüstete Textilien schützen beispielsweise Kleidungsstücke vor Wasser und Schmutz und mit der Firma Sto entwickelte Fassadenfarben machen Häuserfassaden wasserfest und selbstreinigend. Der Lotus-Effekt ist eine der 12 wichtigsten Innovationen aus Deutschland der letzten 50 Jahre; es existieren mittlerweile über 200 Nebeninnovationen.

Manche extrem wasserabweisenden biologischen Oberflächen verfügen über eine erstaunliche Fähigkeit: Unter Wasser getaucht halten sie dauerhaft eine Luftschicht (Salvinia-Effekt). Solche Luftschichten sind technisch höchst interessant. Sie können beispielsweise zur Reibungsreduktion oder zur Verhinderung des Bewuchses mit Foulingorganismen in marinen Anwendungen eingesetzt werden. Auf Schiffsrümpfen können solche „Gleitfilme“ den Treibstoffverbrauch erheblich senken − bis zu 3 % des globalen Treibstoffverbrauchs lassen sich sparen, wenn Frachtschiffe auf Luftschichten durch das Wasser gleiten und dadurch viel weniger Treibstoff verbrauchen.

Lotus und Salvinia sind nur zwei Beispiele von rund 280.000 bekannten Pflanzenarten. Alle sind in Jahren der Evolution in Mutation und Selektion funktional optimiert und bilden eine unerschöpfliche Quelle der Inspiration für Techniker und Materialwissenschaftler − sie zeigen eindringlich, welche technischen Meisterleistungen die Evolution hervorgebracht hat. Wir verlieren die Artenvielfalt und damit die Vorbilder für unsere Bionik-Entwicklungen derzeit in dramatischem Ausmaß. Die Bionik ist ein wichtiges Argument für den Erhalt unserer Umwelt mit ihrer Biodiversität.

Beide Bionik-Erfolgsgeschichten in eindrucksvollen Bildern und gut erklärt von Professor Barthlott sehen Sie hier im Video (Quelle: FutureMag von Arte; Sendung vom 04.06.2016).

>>

Presse // 22. Februar 2016

Bionischer Nebelfänger gewinnt Wasser aus Nebel

Kein Rohstoff ist so bedeutend wie Wasser, der Zugang zu sauberem Wasser gilt als Menschenrecht. Für viele Menschen ist Wasser eine Selbstverständlichkeit, über dessen Gewinnung, Aufbereitung und Verteilung zu wenig nachgedacht wird. Damit gehört dieses Thema zu den zentralen Herausforderungen unserer Zeit und besonders in Entwicklungsländern nimmt die Trinkwassergewinnung in vielen Regionen der Welt an Bedeutung zu.

In trockenen Gebieten hat die Natur effiziente Methoden entwickelt, um das Überleben von Pflanzen und Tieren in trockenen Regionen durch die Gewinnung von Wasser aus Feuchtigkeit in der Luft zu sichern. An dieser Stelle setzte ein dreijähriges Bionik-Projekt zur Entwicklung effizienter, innovativer Nebelfänger an. Deutschlands größtes Textilforschungszentrum und BIOKON-Mitglied, das Institut für Textil- und Verfahrenstechnik (ITV) der Deutschen Institute für Textil und Faserforschung Denkendorf, der Garnproduzent Nextrusion und Essedea, Hersteller des Abstandsgewirks 3DEA®, haben in vielen Entwicklungsschritten das patentierte Nebelfangsystem FogHa-TiN® entwickelt. Dabei handelt es sich um eine dreidimensionale, etwa zwei cm dicke Textilstruktur aus schwarz eingefärbten Polymerfasern. Erstmals wurde die dritte Dimension eines Textils für das Auffangen und Abscheiden von Wasser genutzt und eine neuartige Struktur von 3DEA eigens zu diesem Zweck entwickelt.

Auch die deutsche Wasserstiftung arbeitete an einem Nebelkollektor, der mittlerweile unter dem Namen CloudFisher von der Aqualonis GmbH vertrieben wird und ebenfalls 3DEA zur Wassergewinnung einsetzt. In ihm wird die innovative Textilstruktur  mit einer neuartigen Rahmenkonstruktion kombiniert und dadurch optimiert.
Die neuartigen Nebelfänger stellen innovative Lösungen zur Wassergewinnung in trockenen Gebieten dar.

Der CloudFisher wurde von der WasserStiftung in einem anderthalbjährigen Feldversuch in Marokko in Zusammenarbeit mit der TU München unter Einsatz verschiedener Abscheidematerialien getestet.

Das Ergebnis:

  • CloudFisher ist der weltweit erste serienmäßige Nebelfänger, der Windgeschwindigkeiten von bis zu 120 km/h standhält.
  • 3DEA Abstandsgewirk ist fast 20% effektiver als das zweitbeste getestete Material und hat in der Untersuchung in Marokko Spitzenwerte bis zu 600 Liter Wasser pro Tag und Modul von 9m² „geerntet“ (d.h. 66 l pro m² und Tag). Je nach Region und Jahreszeit liegen die Werte für gewöhnlich bei 36-126 Litern pro Tag und Modul von 9m².

Nebelfänger können hunderttausende Menschen mit Wasser versorgen, die sonst keinen oder nur einen sehr begrenzten Zugang zu Süßwasser haben. Denkbar ist die Nutzung für die Land- und Forstwirtschaft, aber auch für kommerzielle Zwecke.
Die möglichen Einsatzgebiete sind überaus zahlreich: In Frage kommen Gebirgs- und Küstenregionen weltweit, in denen selten Regen fällt und ein hohes Nebelaufkommen herrscht.
Quelle: Essedea GmbH & Co. KG

In diesem Film sehen Sie die wichtigsten Fakten über den CloudFisher:

>>

Aktuelles // 28. Januar 2016

BIOKON auf der „Woche der Umwelt“

BIOKON präsentiert als Aussteller bei der Umwelt-Schau des Bundespräsidenten und der DBU am 7. und 8. Juni 2016 im Park von Schloss Bellevue ressourceneffiziente Innovationen aus der Natur. Im Park des Berliner Amtssitzes des Bundespräsidenten stehen für zwei Tage das Thema Umweltschutz und die damit verbundenen wirtschaftlichen und gesellschaftlichen Chancen im Fokus der Öffentlichkeit.

Aus über 600 Bewerbungen wurden rund 190 Aussteller von einer Jury ausgewählt. Die von BIOKON gemeinsam mit den Partnern Sto SE & Co. KGaA, dem Nees-Institut für Biodiversität der Pflanzen der Universität Bonn, der Hochschule Bremen und der Airbus Operations GmbH vorgeschlagenen Markterfolge aus der Bionik konnten die vom Bundespräsidialamt berufene Jury in puncto Qualität, Innovation und Modellhaftigkeit sowie hohes gesellschaftliches, technisches und wirtschaftliches Umsetzungspotenzial überzeugen.

Vor beeindruckender Kulisse finden anschauliche Projektpräsentationen statt

Die beeindruckende Kulisse des Schlosses Bellevue werden die Aussteller aus Deutschland und der Schweiz nutzen, um sich auf fast 4.000 Quadratmetern des Parks zu den Fachthemen Klimaschutz, Energie, Ressourcen, Boden und Biodiversität, Mobilität und Verkehr, Bauen und Wohnen zu präsentieren. In den einzelnen Pavillons finden umfangreiche und anschauliche Projektpräsentationen statt, mit denen auch Querbezüge zur Bildung und Kommunikation sowie zur Digitalisierung dargestellt werden.

Vielfältiges Vortrags- und Diskussionsangebot zu aktuellen Nachhaltigkeitsthemen

Parallel zu der Ausstellung wird es ein hochkarätiges und vielfältiges Vortrags- und Diskussionsangebot geben. Auf der Hauptbühne werden Spitzenvertreter aus Politik, Wirtschaft, Wissenschaft und Gesellschaft in moderierten Diskussionsrunden zu den Schwerpunktthemen diskutieren und zu folgenden Fragen neue Entwicklungen aufzeigen: Welchen Handlungsrahmen bieten die planetaren Leitplanken? Wie kann die weitere Energiewende gestaltet werden? Wie kommt der Klimaschutz voran? Wie werden Ressourcen effizient genutzt? Wie können Kreisläufe geschlossen und Innovation auf Spitzenniveau gefördert werden? Welche Visionen gibt es für ein nachhaltiges urbanes Leben? Wie gehen wir mit der Nutzungskonkurrenz um die Ressource Boden um, wie erreichen wir eine ressourcenschonende Landnutzung? Wie kann die Veränderungsbereitschaft der Gesellschaft für die großen Transformationsprozesse gestärkt werden? Ergänzend und für die noch detailliertere Diskussion werden zudem 70 bis 80 Fachforen zu aktuellen Nachhaltigkeitsthemen mit rund 400 Experten angeboten.

Besuchen Sie uns auf der Woche der Umwelt

Wir laden Sie ein, uns auf der Woche der Umwelt zu besuchen. Zur Anmeldung gelangen Sie unter folgendem Link >>

Hier finden Sie weitere Informationen zum Bionik-Gemeinschaftsstand und zum Besuch von Bundespräsident Gauck am BIOKON-Stand auf der letzten Woche der Umwelt.

>>

Presse // 17. Dezember 2015

3D-Druck im zivilen Flugzeugbau – eine Fertigungsrevolution hebt ab

Für den Deutschen Zukunftspreis des Bundespräsidenten nominiert und von der Jury in den „Kreis der Besten“ aufgenommen wurden BIOKON-Mitglied Airbus, LZN Laser Zentrum Nord und Concept Laser mit ihrer gemeinsamen Entwicklung zum 3D-Drucken. Ihnen gelang es, ein dreidimensionales gedrucktes Flugzeugbauteil aus Metall zu fertigen – einen Kabinenhalter aus Titan.

Airbus – und auch anderen Industriezweigen in Deutschland – steht damit ein neues Produktionsverfahren zur Verfügung, das weit mehr Möglichkeiten bietet als herkömmliche Fertigungsverfahren. Mit dieser neuen Verfahrenstechnik werden Produkte nicht aus einem Materialstück herausgestanzt, -gefräst oder -geschnitten, sondern Schicht für Schicht aufgebaut.

Das bringt etliche Vorteile: Material- und Energieverbrauch sind deutlich geringer, was Ressourcen und Klima schont. Zudem haben die Konstrukteure mehr Freiheit bei der Gestaltung der Bauteile. Und: Prototypen, Einzelstücke oder Kleinserien von Produkten lassen sich einfach und günstig herstellen.

3D-Druck im Metallbereich − reif für die industrielle Serienproduktion

Flugzeugbau stellt hohe Ansprüche an Konstruktion und Fertigung. Die Herausforderung: Komplexe Flugzeugteile effizient, kostengünstig und möglichst umweltschonend herzustellen. Peter Sander, Leiter des Bereiches Emerging Technologies & Concepts bei Airbus, Claus Emmelmann als CEO des LZN Laser Zentrum Nord sowie Leiter des Instituts für Laser- und Anlagensystemtechnik der TU Hamburg-Harburg und Frank Herzog als Geschäftsführer von Concept Laser im oberfränkischen Lichtenfels haben dieses Verfahren mit ihren Teams entwickelt und es zur Anwendungsreife geführt: Airbus setzt das gemeinsam geschaffene Verfahren erstmals zur Herstellung eines Kabinenhalters aus Titan ein. Er dient dazu, den Crew-Ruheraum an Bord des neuen Langstreckenflugzeugs A350 XWB zu befestigen, und ist seit 2014 im Einsatz.

Das sogenannte „LaserCUSING®“ reduziert als „grüne Technologie“ nicht nur den ökologischen Fußabdruck der Fertigung, sondern verkürzt auch Ausfallzeiten der Flugzeuge während der Wartung: Benötigte Ersatzteile lassen sich nach Bedarf sofort und vor Ort drucken.

Bei Airbus plant man, den 3D-Druck künftig zur Herstellung weiterer Komponenten zu verwenden – und das innovative Verfahren zu nutzen, um neuartige konstruktive Elemente zu realisieren. Diese bionische Konstruktionsmethodik, entwickelt am LZN, ermöglicht nach dem Vorbild der Natur geformte Bauteile zu kreieren und damit bis zu 80% Gewicht zu sparen. Die so erzielte Gewichtsreduktion trägt maßgeblich zur Reduktion des CO2-Ausstoßes der kommenden Flugzeuggenerationen bei.

Neue Verfahrenstechnik: Schicht für Schicht − Bauteile aus Metall

Allerdings kamen bisher nur bestimmte Werkstoffe für die „additive Fertigung“ in Frage, etwa Kunststoffe oder leicht schmelzbare Legierungen. Durch das neue Verfahren können im 3D-Druck auch mechanisch und thermisch hoch-belastbare metallische Bauteile produziert werden. Das „LaserCUSING®“-Verfahren eignet sich etwa für verschiedene Stähle, Edelmetalle wie Gold- und Silberlegierungen sowie Legierungen auf Basis von Titan. Die Verarbeitung von Titan stellt jedoch sowohl konventionelle Fertigungsverfahren als auch das „LaserCUSING®“-Verfahren vor große Herausforderungen. Die intensiven Verfahrensentwicklungen vom Laser Zentrum Nord und Concept Laser, in enger Kooperation mit Airbus, ermöglichen nun eine qualitätsgesicherte Fertigung metallischer Bauteile für die Luftfahrt.

Pulverförmiges Metall wird mit dem energiereichen Licht eines Faserlasers bestrahlt und dadurch aufgeschmolzen. Nach dem Erkalten verfestigt sich das Material. Der Laser streicht computergesteuert Zeile für Zeile über das Metallpulver und lässt so die gewünschte Form entstehen. Um das komplette Produkt aufzubauen, wird es nach Fertigstellung jeder Schicht um einige Dutzend Mikrometer abgesenkt und danach die nächste Lage aufgebracht. Eine patentierte „stochastische“ Ansteuerung stellt sicher, dass sich auch große Bauteile, wie sie im Flugzeugbau benötigt werden, weitgehend spannungsfrei drucken lassen.

Digitale Innovation

Kern der Innovation ist der vollständig digitale Charakter des Fertigungsverfahrens. Damit lässt sich der 3D-Drucker in eine durchgängige digitale Prozesskette einbinden, bei der die einzelnen Herstellungsschritte samt Materiallogistik und Qualitätsprüfung automatisch ablaufen und aufeinander abgestimmt sind. Das revolutionäre Konzept, dessen Entwicklung und Umsetzung Forscher und Unternehmen in Deutschland führend vorantreiben, verwirklicht das Prinzip der Industrie 4.0.

Wachsender Markt

Die Bedeutung des 3D-Drucks von metallischen Produkten reicht weit über den Flugzeugbau hinaus. Die Technologie wird voraussichtlich in vielen Branchen wie dem für Deutschland besonders wichtigen Fahrzeug-, Maschinen- und Anlagenbau sowie in der Medizintechnik konventionelle Fertigungsmethoden ersetzen oder ergänzen. Fachleute erwarten, dass der Markt für den 3D-Druck in den nächsten Jahren auf das Fünffache wachsen wird.

Quelle: Presseservice Deutscher Zukunftspreis

>>

Aktuelles // 6. Oktober 2015

Sonderausstellung „Artenreich Natur“ – Biodiversität entdecken, erleben und verstehen

Artenreichtum, die genetische Vielfalt innerhalb einer Art und die Fülle an Lebensräumen – über diese drei Bausteine der Biodiversität und ihr Zusammenspiel informiert seit dem 6. Oktober 2015 die neue Sonderausstellung „Artenreich Natur“ im Bionicum in Nürnberg.

Biodiversität bedeutet biologische Vielfalt. Diese Vielfalt hat sich in Milliarden von Jahren entwickelt und ist das Resultat der Evolution. Sie ist die Grundlage für die Sicherung der Welternährung, für neue Medikamente, für den technischen Fortschritt und auch für die Bionik. Vorrangig wird Biodiversität mit dem Begriff Artenvielfalt gleichgesetzt. Doch die Anzahl der Mikroorganismen, Tier-, Pflanzen- und Pilzarten in einem Ökosystem, beschreibt nur einen Teil. Auch genetische Vielfalt und die Vielfalt der Ökosysteme spielen eine wichtige Rolle.

Mit einer Mischung aus spielerischem Entdecken, anschaulichen Texttafeln und ausgewählten Exponaten entführt „Artenreich Natur“ Jung und Alt auf eine Reise in die einzigartige Vielfalt des Lebens. Die Besucher können ihr Wissen im Biodiversitätsquiz testen, mit allen Sinnen erfahren, was eine ‚Schlüsselart‘ ist, als Fischer die Meere retten oder sich an der Schmökerwand über Schutzprojekte informieren. Die Schau beleuchtet nicht nur den wissenschaftlichen Hintergrund der Biodiversität, sondern vermittelt anschaulich, warum ihr Bewahren für unsere Zukunft so wichtig ist.

Warum das Bionicum sich für dieses Thema entschieden hat, liegt auf der Hand: Die Bionik nutzt die Natur und seine Arten als Ideengeber. Je mehr Arten entdeckt und ihre Besonderheiten und Lebensweisen entschlüsselt werden, umso mehr kann man von ihnen lernen und in die Technik umsetzen. Bisher ist nur ein Bruchteil des Ideenreichtums der Natur bekannt, während weltweit durch Eingriffe in die Umwelt Tier- und Pflanzenarten aussterben. Der Erhalt der Ökosysteme mit ihren vielfältigen Arten wird immer wichtiger und schützt zugleich das riesige Potential für die Bionik. Andersherum können bionische Erfindungen auch die Umwelt schützen, denn so energieeffizient, ressourcenschonend und nachhaltig wie die Natur arbeitet (noch) keiner.

Weitere Informationen zum Bionicum und zur Sonderausstellung finden Sie hier >>
>>

Forschung // 11. August 2015

Von trinkenden Echsen zum gezielten Transport von Schmiermitteln

Die Arbeitsgruppe Bionik am Institut für Biologie II der RWTH Aachen stellt ein neues Modell für den passiven gerichteten Flüssigkeitstransport vor. Das Funktionsprinzip haben sie von der speziellen Oberflächenstruktur der texanischen Krötenechse gelernt.

Die texanische Krötenechse hat eine besondere Fähigkeit: Um ihren Durst zu stillen, muss sie keine Wasserstelle aufsuchen, sondern sie kann Flüssigkeit über die Haut aufnehmen. Mit Kapillarkanälen zwischen ihren Schuppen sammelt sie kleinste Wassermengen aus der Umgebung, beispielsweise aus feuchtem Sand. Feine Kapillarkanäle transportieren anschließend das Wasser zum Maul.

Die Forscher der RWTH Aachen haben die Geometrie dieser Kanäle auf der Haut feuchtigkeitserntender Echsen untersucht und erfolgreich auf Kunststoff- und Metalloberflächen übertragen. Die neuartigen Oberflächenstrukturen ermöglichen es, Flüssigkeiten passiv und energieneutral in eine Richtung zu transportieren – sogar entgegen der Schwerkraft.

„Die Kapillaren bilden ein Netzwerk und werden zum Maul hin enger und besitzen eine gezielte Verschaltung“, erläutert Diplom-Biologe und BIOKON-Mitglied Philipp Comanns, der über das Thema promoviert. „Unsere Untersuchungen haben gezeigt, dass das Phänomen auf zwei Prinzipien beruht. Das ist einmal die periodisch und asymmetrisch wechselnde Form der Kapillaren, die sich zusammenziehen und wieder weiten, und zum anderen die Verschaltung zwischen den Kapillarkanälen“, so Comanns.

Die Wissenschaftler untersuchten die Haut konservierter Echsen, die das Zoologische Forschungsmuseum Alexander Koenig in Bonn zur Verfügung stellte. Zusammen mit der Arbeitsgruppe von Professor Werner Baumgartner an der Johannes Kepler Universität Linz entwickelten sie ein theoretisches Modell, wie sich Flüssigkeiten in solchen Kapillaren verhalten, und einen technischen Prototypen, der der Natur so nahe wie möglich kommt. Dazu laserten sie sägezahn-förmige Kapillarstrukturen in Kunststoffplatten. „Nach diesem Modell geschaffene künstliche Oberflächen verhindern den Flüssigkeitsfluss in eine Richtung, während sie ihn in die andere aufrechterhalten, selbst wenn ein geringer Gegendruck erzeugt wird“, erklärt Comanns. „Sie verhalten sich für die Flüssigkeit wie Dioden.“

Da der passive, gerichtete Transport von Flüssigkeiten oder Schmiermitteln bei vielen technischen Prozessen erforderlich ist, sehen die Wissenschaftler für die technische Anwendung ein breites Spektrum von Möglichkeiten. Dazu gehören beispielsweise der Bereich der Mikrofluidik, bei medizinischen Anwendungen, Destillen oder E-Ink-Displays. „Mit der Methode können technische Prozesse verbessert und Ressourcen geschont werden“, sagt Philipp Comanns. „Der nächste Schritt wird sein, das Prinzip für spezifische Produktgruppen weiterzuentwickeln.“

Gefördert wurde diese anwendungsorientierte innovative Forschung unter dem Titel "BioLas.exe" im Rahmen des VIP-Programms – Validierung des Innovationspotentials wissenschaftlicher Forschung – durch das Bundesministerium für Bildung und Forschung und betreut durch die VDI/VDE Innovation + Technik GmbH sowie den Projektträger Jülich.
Die Arbeit über den Wassertransport bei der Texanischen Krötenechse wurde in der Augustausgabe des Journal of the Royal Society Interface veröffentlicht.

>>

Presse // 5. August 2015

„Ausgezeichnete“ Fassadenfarbe nach dem Vorbild des Nebeltrinker-Käfers

Mit der Auszeichnung „Die Oberfläche“ prämiert das Fraunhofer IPA seit 2012 alljährlich innovative Anwendungen und Technologien aus dem Gebiet der Oberflächentechnik. Am 20. Juli hat die Forschungseinrichtung die diesjährigen Gewinner bekanntgegeben. Das Rennen machte die Firma Sto SE & Co. KGaA, die eine neue bionische Fassadenfarbe nach dem Vorbild des Nebeltrinker-Käfers entwickelt hat.

Um in der Wüste zu überleben, wandelt dieser Käfer den Nebel, der auf seinem Rücken kondensiert, in Wasser um. Dabei sammeln die hydrophilen Kuppen auf seinem Panzer das Wasser an. Durch die hydrophoben Täler fließt es wiederum mithilfe der Schwerkraft in Richtung Mund ab. Dieses bionische Prinzip bildet die Grundlage für die neue Fassadenfarbe: Die hydrophil-hydrophobe Mikrostruktur, die durch eine Kombination von organischen und anorganischen Komponenten und einer Selbstorganisation während der Trocknungsphase entsteht, führt das durch Tau und Nebel entstandene Wasser an der Fassade in Rekordzeit ab.

Die Fassadenoberfläche trocknet deutlich schneller und ist resistenter gegen Algen und Pilze. Ökologisch nachhaltig ist die Farbe noch dazu, denn sie wird ohne biozide Wirkstoffe und CO2-neutral hergestellt. Für die Jury war ausschlaggebend, dass die Übertragung dieses oberflächentechnischen Konzepts in die Technik zukünftig Fassaden trockener hält und damit den Wert von Gebäuden nachhaltig sichert.

Quelle: Presseinformation Fraunhofer IPA

>>

Presse // 5. August 2015

Eine Armprothese für Kinder zum Spielen und Leben

Design-Student Carlos Arturo Torres hat gemeinsam mit dem kolumbianischen Center for Integrated Rehabilitation (CIREC) und dem Lego Future Lab das „IKO Creative Prosthetic System“ entwickelt, das mit dem Design-Award Core 77 ausgezeichnet wurde. Dabei handelt es sich um eine bionische Armprothese, basierend auf einem modularen Stecksystem, mit dem Kinder ihre Prothesen auf spielerische Weise selbst programmieren und nach ihren Wünschen gestalten können.

Kinder mit Behinderung eine Teilhabe am kindgerechten Alltag zu ermöglichen, Ihnen Ängste zu nehmen und über neue Möglichkeiten eines spielerischen Miteinander eine anderes Verständnis für ihre Situation bei Kindern ohne Behinderung hervorzurufen − das war Torres Vision für das Projekt.
Herausgekommen ist ein System, dass die Balance hält zwischen einer spielerischen Erfahrung und einer für jeden Tag funktionellen Prothese, die den Kindern helfen kann, mit dem künstlichen Arm leben zu lernen.

Die batteriebetrieben Prothese wird durch Muskelkontraktion gesteuert: Bei jeder Kontraktion des Muskels entsteht auf der Haut eine elektrische Spannung. Myoelektrische Sensoren registrieren darüber die Aktivität der Muskeln im Stumpf und senden diese Signale an das Gehirn.
Ein Prozessor, der im unteren Teil des modular aufgebauten Arms verbaut wurde, ist kompatibel mit der Lego Mindstorms-Plattform. Dieses Modul können die Kinder mit einer Vielzahl verschiedener auch selbst programmierbarer Aufsätze erweitern, wie beispielsweise einem Greifer, einem Bagger oder einem Raumschiff.

Details des Projektes sehen sie hier im Video:

>>

Aktuelles // 17. Juli 2015

International Bionic-Award 2016 ausgeschrieben

Zum fünften Mal wird im Herbst 2016 der internationale Bionic-Award verliehen. Der mit 10.000 Euro dotierte Preis richtet sich an Nachwuchswissenschaftler aus der ganzen Welt. Bis zum 26. Februar 2016 können Bewerbungen eingereicht werden.

Mit dem internationalen Bionic-Award wird eine herausragende Arbeit beispielsweise in Form einer bionischen Produktentwicklung oder einer Dissertation oder Habilitation ausgezeichnet, die innerhalb der letzten zwei Jahren vor dem Einreichungstermin fertig gestellt wurde. Teilnehmen können sowohl Einzelpersonen als auch Teams. Den oder die Preisträger ermittelt eine internationale und aus hochrangigen Bionik-Experten zusammengesetzte Jury.

Informationen zu den Bewerbungsvoraussetzungen und den in englischer Sprache einzureichenden Unterlagen können Sie hier herunterladen >> 

>>