BIOKON – Das Bionik-Kompetenznetz

Nachrichten mit Nachhall

Das Schönste, was wir entdecken können, ist das Geheimnisvolle.
Albert Einstein, Physiker

Bionik ist das anwendungsorientierte Zusammenspiel von Wissenschaft und forschenden Unternehmen. Ihre Ergebnisse zielen auf Innovationen nach dem Vorbild der Natur. Sie sollen immer das Potenzial haben, Ideengeber für ein besseres Morgen zu sein. Solchen erfolgreichen Lösungen schaffen Nachrichten mit Nachhaltigkeit.

Print

Forschung // 27. Januar 2017

Facettenaugen für Industrie und Smartphone

Fraunhofer-Forscher haben ein Verfahren entwickelt, mit dem sie eine nur noch zwei Millimeter flache Kamera herstellen können. Ihre Linse ist ähnlich einem Insektenauge in 135 winzige Facetten eingeteilt. In Anlehnung an das Vorbild haben die Forscher ihr Mini-Kamera-Konzept facetVISION genannt und auf der Technik-Messe CES in Las Vegas im Januar 2017 vorgestellt.

  • Die Mini-Kamera aus dem Fraunhofer IOF hat eine Dicke von nur zwei Millimetern bei einer Auflösung von einem Megapixel.
  • Die Kamera ist damit für die Automobilproduktion, die Druckindustrie oder Medizintechnik geeignet.
  • Dank ihrer geringen Dicke könnte ihr Grundprinzip künftig das Design von Smartphones verändern.

Die Technologie von Fraunhofer setzt sich wie das Insektenauge aus vielen kleinen gleichförmigen Linsen zusammen. Sie sitzen wie Stücke eines Mosaiks dicht nebeneinander. Jede Facette nimmt nur einen Teilausschnitt der Umgebung wahr. Im Insektengehirn werden dann die vielen Einzelbilder der Facetten zu einem Gesamtbild zusammengesetzt. In der neu entwickelten facetVISION-Kamera übernehmen Mikrolinsen- und Blenden-Arrays diese Funktion. Durch den Versatz jeder Linse zu der ihr zugeordneten Blende erhält jeder optische Kanal eine individuelle Blickrichtung und bildet stets einen anderen Bereich des Gesichtsfelds ab.

»Zukünftig erreichen wir mit dieser aus der Natur übernommenen Technik bei einer Kameradicke von nur zwei Millimetern eine Auflösung von bis zu vier Megapixel«, sagt Andreas Brückner, Projektleiter am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena. »Das ist eine deutlich höhere Auflösung als bei Kameras in der Industrie – etwa in der Robotik oder Automobilproduktion.« Die Technologie wurde gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern des Fraunhofer-Instituts für Integrierte Schaltungen IIS in Erlangen entwickelt und von der Fraunhofer-Zukunftsstiftung gefördert.

Kostengünstige Produktion auf Wafern

Die Mikrooptik der Fraunhofer-Forscher lässt sich in großer Zahl kostengünstig produzieren – durch Verfahren ähnlich jenen, die in der Halbleiterchip-Industrie üblich sind. Computerchips werden in Massen auf Wafern, auf großen Halbleiterscheiben, gefertigt und anschließend durch Sägen voneinander getrennt. Entsprechend können am IOF facetVISION Kameraoptiken in Tausender-Stückzahl parallel gefertigt werden. »Die Kameras sind z. B. für die Medizintechnik interessant – für optische Sensoren, mit denen man schnell und einfach Blut untersuchen kann«, sagt Brückner. »In der Druckerei wiederum benötigt man solche Kameras, um bei laufender Maschine in hoher Auflösung das Druckbild zu überprüfen«. Weitere Anwendungen: Kameras an Autos, die beim Einparken helfen oder in Industrierobotern, die verhindern, dass die Maschinen mit Menschen kollidieren.

Smartphones im Blick

Auch für Smartphones ist die Facettenaugentechnologie interessant: Ihr Mini-Kameraobjektiv ist heute üblicherweise fünf Millimeter dick, damit es das Umgebungsbild zufriedenstellend scharf darstellen kann. Das erschwert den Herstellern das Design von superdünnen Smartphones: Die Kamera ist dicker als das übrige Smartphone und ragt deshalb aus der Fläche heraus. Die Hersteller nennen dies den »Camera-bump« – die unästhetische »Kamera-Beule«. Die Kameraoptiken für Smartphones werden jedoch nicht auf Wafern, sondern im Kunststoff-Spritzguss gefertigt. Bei diesem Verfahren wird heißer flüssiger Kunststoff wie bei einem Waffeleisen in die Form gebracht. Roboter setzen die fertigen Linsen dann in die Smartphone-Kamera ein. »Wir möchten das Insektenaugenprinzip auch in diese Produktionstechnologie überführen«, sagt Brückner. »Es ist zum Beispiel denkbar, dass wir mehrere kleine Linsen nebeneinander in der Smartphone-Kamera platzieren. So ließe sich der Facetteneffekt auch im Spritzguss realisieren. Auflösungen von mehr als 10 Megapixel bei einer Kameradicke von nur etwa dreieinhalb Millimetern wären möglich«.

Quelle: Fraunhofer Presseinformation Forschung Kompakt Januar 2017

>>

Forschung // 2. Januar 2017

„Bionische Wölbstrukturen“ − Die Natur als Vorbild für Ressourceneffizienz

Die Dr. Mirtsch Wölbstrukturierung GmbH in Berlin hat ein innovatives Verfahren zur Herstellung von wölbstrukturierten Materialien entwickelt. Nach dem Vorbild der Natur entwickelt und produziert die Dr. Mirtsch Wölbstrukturierung GmbH Leichtbaustrukturen aus dünnwandigen Materialien für innovative Anwendungen. Die patentierte Wölbstrukturierungstechnik arbeitet auf Grundlage eines einzigartigen, bionischen Selbstorganisationsprinzips und ist damit besonders material- und oberflächenschonend. Durch die Wölbstrukturen PowerStruct® können Bauteile bis zu 40 Prozent leichter ausgeführt werden. Eine vorveredelte Oberfläche bleibt während des Umformprozesses quasi unverändert. Es können vielfältige Synergieeffekte für innovative Lösungen genutzt werden, die den Kundennutzen von Produkten erhöhen und gleichzeitig die Umwelt schonen. Wölbstrukturierte Materialien weisen neben Material- und Energieeffizienz weitere technische Vorteile auf, weshalb sie bei unterschiedlichsten Produkten, wie Katalysatoren, Waschmaschinen oder in der Architektur bereits zum Einsatz kommen.  

Die Gestamp Umformtechnik GmbH nutzt beispielsweise diesen Vorteil bei der Produktion von Bauteilen für die Automobilindustrie. Die steife Struktur des wölbstrukturierten Bleches ermöglicht die Verwendung von dünnem Aluminium, wodurch erhebliche Gewichteinsparungen erzielt werden können. Darüber hinaus lässt sich durch den Einsatz des strukturierten Materials das sonst auftretende, störende Dröhnen von dünnwandigen Bauteilen vermeiden.  

Die Siteco Beleuchtungstechnik GmbH verwendet wölbstrukturiertes Aluminium bei der Produktion der Hexal®-Leuchte. Da das Licht der LEDs durch die Struktur optimal reflektiert wird, kann eine hohe Lichtqualität erzielt werden. Das Material dient gleichzeitig als Gehäuse und Reflektor der Lampe. Dadurch ergibt sich eine Materialersparnis von insgesamt 80 Prozent. Zudem treten bei den strukturierten Blechen weniger Verspannungen bei höheren Temperaturen auf.  

Das Video vom VDI Zentrum Ressourceneffizienz GmbH (VDI ZRE) entstand im Auftrag des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit.

>>

Aktuelles // 9. Dezember 2016

Green up your future − Hai-Noon für grüne Berufe mit Zukunft

Ein Hai, an dem man sich reiben kann, ein Wüstenkäfer, der zum Trinken einen Kopfstand macht, und ein Adler, der der Energievergeudung davonfliegt… Aus den Vorbildern der Natur macht Bionik überraschende und zukunftsweisende technische Lösungen. Diese öffnen jungen Menschen in der interaktiven Wanderausstellung GREEN UP YOUR FUTURE (GUYF) Türen zu faszinierenden Berufen mit Zukunft.

In Millionen Jahren bewährt

Bioniker nutzen für das „Neuerfinden“ technischer Innovationen das nahezu unerschöpfliche Reservoir an biologischen Strukturen, Prozessen und oft überraschenden funktionalen Lösungen, die in Millionen Jahren evolutionärer Entwicklung erprobt und optimiert wurden.
Damit ist die Bionik nicht automatisch nachhaltig. Indem sie aber unseren Blick auf die Natur und deren unerschöpfliche Potenziale schärft, kann sie dazu beitragen, dass Jobs #ImGrünenBereich sind: grün, nachhaltig und sinnvoll. Und deswegen zukunftssicher.

Die Ausstellung

Von Anfang 2017 an tourt die Ausstellung über drei Jahre durch 19 Orte in Deutschland und macht dabei die Berufsorientierung für Schüler*innen und Studierende sowohl Indoor wie auch Outdoor barrierefrei erfahrbar. Mit Greening verbinden sich dabei Spaß und ein attraktives, digitales Medienerlebnis – ganz nach dem Geschmack und den Kommunikationserwartungen der jungen Zielgruppe. Augmented Reality, temporeiches multimediales Storytelling und – selbstverständlich – freies WLAN gehören genauso dazu, wie Infotainment zu Themen aus der Bionik und Jobs aus der Welt der Green Economy.

Überraschende Bionik-Reise

Überraschende Beispiele aus der Bionik, interaktive Exponate in der Indoor-Ausstellung, multimediale Screens und lebensgroße Darstellungen sympathischer Original-Protagonisten schlagen dabei die Brücke in die unterschiedlichen Lebenswelten junger Leute und fordern zur Vertiefung des Inhalts mit dem eigenen Smartphone oder Tablet auf. Jeder einzelne Kommunikationsschritt wird immer von der Aufforderung zur Weiterreise auf der Bionik-User-Journey begleitet.

Hingehen wo die Musik spielt

Standorte der Wanderausstellung sind der von den jungen Menschen favorisierte öffentliche Raum, wie urbane Hot-Spots, Sportplätze und Festival-Locations sowie bildungsbezogene Institutionen und Veranstaltungen, z.B. Berufsmessen und Jobbörsen, Hochschulen und IHKs, Bildungseinrichtungen und Jobcenter.

Multimediales Entdecken

Die in der Ausstellung erzählten 15 Beispiele von realen Auszubildenden und Studierenden werden auf der GUYF-Website (mobile-optimiert) mit allen Hintergründen zum Greening und zur Bionik spannend gebündelt und aufbereitet. All dies lässt sich über Social Media teilen und lädt ein zum Dialog innerhalb der Zielgruppe sowie mit Jobanbietern aus Wirtschaft, Wissenschaft und Forschung. Ganz gleich auf welchem Kanal: Die Botschaft der Protagonisten lautet immer: Das was ich tue, ist für mich großartig und sinnstiftend – wäre das nicht auch etwas für dich? GREEN UP YOUR FUTURE.

Jobs (fast) ohne Ende

Dazu bietet das umfassend vernetzte Projekt GUYF eine Jobdatenbank mit mehr als 300 grünen Jobprofilen, Weiterbildungsmöglichkeiten und Studiengängen mit hohem Greening-Potenzial. Die Datenbank ermöglicht nicht nur bereits vorinformierten Jugendlichen ein für sie passendes grünes Jobprofil zu finden, sie bietet auch jungen Menschen in der Berufsorientierung eine spielerische Möglichkeit zu einer realistischen Selbsteinschätzung auf Basis der RIASEC-Standards.

Förderer und Partner

GUYF ist eine Ausstellung von BIOKON – Forschungsgemeinschaft Bionik-Kompetenznetz e.V. – und Green Economy Academy e.V. Sie wird im Rahmen des ESF-Bundesprogramms „Berufsbildung für nachhaltige Entwicklung befördern. Über grüne Schlüsselkompetenzen zu klima- und ressourcenschonendem Handeln im Beruf – BBNE” durch das Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit und den Europäischen Sozialfonds gefördert.

Für die Stories der Auszubildenden und Studierenden haben Mitglieder und Partner von BIOKON ihre Pforten geöffnet und das GUYF-Team großartig unterstützt. Besonderer Dank gilt den Firmen Airbus Operations GmbH, Festo AG & Co. KG, Otto Bock Healthcare Products GmbH, Sto SE & Co. KGaA sowie der Hochschule Bremen und der Universität Kiel. Zum Gelingen der Ausstellung haben darüber hinaus auch die Gottlieb Binder GmbH & Co. KG und die EvoLogics GmbH beigetragen.

>>

Aktuelles // 6. Dezember 2016

Airbus A320-Kabinenstruktur nach dem Vorbild der Natur: Bionische Leichtbau-Trennwand mit dem Ecodesign-Preis ausgezeichnet

Für das Konzept einer bionischen Kabinentrennwand hat BIOKON-Mitglied Airbus den Bundespreis Ecodesign in der Kategorie Konzept erhalten. Bundesumweltministerin Barbara Hendricks zeichnete Peter Sander und Bastian Schäfer aus dem Team für Zukunftstechnologien (Emerging Technologies & Concepts) aus.
Die bionische Trennwand nach dem Vorbild aus der Natur von Airbus ist 45 % leichter als herkömmliche Trennwände für Flugzeuge. Durch die Gewichtsreduktion wird Kraftstoff eingespart und die CO2-Emission pro Flugzeug jährlich um 10 Tonnen verringert.

Das Design basiert auf generativen Gestaltungs- und Fertigungsverfahren sowie auf der Entwicklung eines eigenen, leichten Legierungsmaterials. Dank der additiven Produktion im so genannten 3D-Druck und des modularen Aufbaus lassen sich die Trennwände auch in bestehende Flugzeugkabinen einbauen. Einzelne Komponenten können bei Bedarf einfach ersetzt werden. Das verwendete Material ist komplett rezyklierfähig.

"Airbus zeigt mit der bionischen Trennwand in beispielhafter Weise auf, welche Möglichkeiten generative Fertigung bietet. Im Flugverkehr bedeutet die erreichte Gewichtsreduktion um 45 Prozent eine enorme Kraftstoffersparnis. Die astähnlichen Strukturen bieten einen Ausblick auf das formalästhetische Potential der topologischen Optimierung", so Prof. Matthias Held, Mitglied der Jury des Bundespreises Ecodesign.
"Bionisches Design und additive Fertigungsverfahren spielen eine Schlüsselrolle bei der Flugzeugentwicklung und -fertigung der Zukunft, wo sich fast alles um Gewichtsreduktion dreht", gratulierte Dr. Klaus Richter, Vorsitzender der Geschäftsführung Airbus in Deutschland dem Entwicklungsteam der Airbus Operations GmbH.

Die bionische Trennwand hat Airbus gemeinsam mit dem US-Softwarehersteller Autodesk entwickelt. Seit mehreren Jahren arbeitet Airbus bereits daran, additive Fertigungsverfahren und 3D-Druck für die Flugzeugfertigung nutzbar zu machen. Weitere Beispiele hierfür sind neben der Kabinentrennwand auch Kabinenhalter, Bremsklappen oder Rohrleitungen.

>>

Aktuelles // 25. November 2016

Vektoria Award 2017: Bionik – Natur inspiriert die Wissenschaft

Ob Flugzeug-Tragflächen in Form von Adlerschwingen, saubere Fassaden dank Lotuseffekt oder Unterwassermodems, die wie Delfine kommunizieren – faszinierende Vorbilder aus der Natur inspirieren zu revolutionären technischen Lösungen, denen auch mathematische Berechnungen zu Grunde liegen.

Beim Vektoria Award sind Schülerinnen und Schüler der Klassenstufe 5 bis 13 aufgerufen, in einem Bild das Thema „Bionik – Natur inspiriert die Wissenschaft“ und seinen mathematischen Gehalt anhand eines Beispiels darzustellen – als Digitalbild, Foto oder Zeichnung. Bis zum 3. März 2017 können Teilnehmerinnen und Teilnehmer ihren Beitrag einreichen. Eine Vorauswahl der besten Präsentationen geht im März online.

Die Gewinner werden von den Jurymitgliedern BIOKON-Mitglied Prof. Dr. Thomas Speck, der Mathe-YouTuberin und Schriftstellerin Angela Maria Ruoff alias „Mathematiqua“ sowie dem Meeresbiologen und Naturfotografen Tom Vierus ausgewählt. Die Gewinner können sich über Preisgelder im Gesamtwert von 3.000 Euro freuen.

Auch die Meinung der Internet-Community und Fans ist gefragt: Beim Onlinevoting kann jeder mitmachen und per Mausklick seinen Favoriten wählen. Dem Publikumsliebling winkt eine hochwertige Virtual-Reality-Brille.

Die Schirmherrschaft des Vektoria Awards hat das Deutsche Technikmuseum Berlin.

>>

Aktuelles // 24. November 2016

VDI-Ehrenzeichen für die BIOKON-Vorstandsvorsitzende Frau Professorin Antonia Kesel

Der VDI zeichnet Professorin Antonia Kesel mit dem VDI-Ehrenzeichen für ihre Arbeiten und Erfolge in der Bionik aus. Im Rahmen der VDI-Vorstandsversammlung am 22.11.2016 in Düsseldorf würdigte der VDI damit insbesondere Kesels Engagement zur erfolgreichen die Etablierung der Bionik als Studienfach an deutschen Hochschulen und zur Verankerung der Bionik im VDI. Sie hat damit die Ingenieurwissenschaften in Deutschland um eine innovative und zukunftsweisende Thematik bereichert.

Antonia Kesel hat mit großem persönlichen Einsatz maßgeblich zur Etablierung dieser Forschungsrichtung und zur Vergrößerung des Bekanntheitsgrads der Bionik in der Öffentlichkeit beigetragen. Mit ihrer Berufung auf die Professur für „Technische Zoologie und Bionik“ an die Hochschule Bremen im Jahr 2003 hat sie den ersten internationalen Bachelor- und Masterstudiengang „Bionik“ in Deutschland gegründet und in den folgenden Jahren stark ausgebaut. Der Bremer Studiengang dient seitdem als Vorbild für viele deutsche Hochschulen.

2005 gründete sie das Bionik-Innovations-Centrums Bremen (B-I-C Bremen) an der Hochschule Bremen und hat seitdem die Leitung inne. Die enge Verknüpfung von Forschung und Industrie als Basis für zukünftige Innovationen ist ihr seit jeher ein besonderes Anliegen. Dabei gelingt ihr bravourös der nicht immer einfache Brückenschlag zwischen Hochschule und Industrie bzw. Forschung und Anwendung.

Im VDI ist Frau Prof. Kesel seit Ende 2006 aktiv, seit 2007 hat sie den Vorsitz des VDI-Fachbereichs Bionik inne. Von 2009 bis 2014 war sie Vorsitzende der VDI-Gesellschaft Technologies of Life Sciences (VDI-TLS) und mehr als neun Jahre lang Mitglied im wissenschaftlichen Beirat des VDI. Unter Ihrer Leitung wurden im Rahmen eines DBU-Förderprojekts zahlreiche VDI-Richtlinien zur Bionik erstellt, die inzwischen auch Eingang in die internationale Normung gefunden haben. Dadurch wurde nicht nur Deutschland zu einem wichtigen Wettbewerbsvorteil verholfen, sondern national und international wichtige Beiträge zum Umweltschutz und zur Ressourcenschonung geleistet.

Neben ihrem ehrenamtlichen Engagement für den VDI ist Kesel seit 2004 Präsidentin der Gesellschaft für Technische Biologie und Bionik e.V. (GTBB) und Vorstandsmitglied – seit 2013 als Vorsitzende des Vorstandes – der Forschungsgemeinschaft Bionik-Kompetenznetz e.V. (BIOKON), seit 2009 Gründungs- und Vorstandsmitglied des BIOKON International e.V., seit 2013 Vorsitzende der Forschungsgemeinschaft Bionik-Kompetenz-Netz e.V. und seit 2014 Vorsitzende des Hochschulrats der Hochschule Ostwestfalen-Lippe.

Das Ehrenzeichen des VDI ist eine der höchsten Ehrungen des VDI und wurde 1931, anlässlich des 75jährigen Jubiläums des VDI, gestiftet als Auszeichnung für Ingenieure und Ingenieurinnen sowie Naturwissenschaftler und Naturwissenschaftlerinnen, die besondere Leistungen auf technischem Gebiet erbracht und/oder sich um die technisch-wissenschaftliche bzw. berufspolitische Gemeinschaftsarbeit verdient gemacht haben.

Die aus Gold gegossene Plakette trägt auf der Vorderseite die Inschrift „Für Verdienste um die Technik“, auf der Rückseite den Namen der Geehrten, Frau Prof. Kesel, und das Jahr der Verleihung, 2016.

>>

Presse // 15. November 2016

Ideen der Natur als Quelle für Innovationen verstehen und weiterdenken

„Erfindungen, die die Natur hervorgebracht hat, auf technische Entwicklungen zu übertragen – das finden auch junge Menschen attraktiv. So werden komplexe Zusammenhänge zu den Themen Biologie, Technik und Wirtschaft leichter verständlich und der Weg zur Entwicklung nachhaltiger Gebrauchsgegenstände vereinfacht“, sagte Dr. Matthias Miersch, MdB und Kuratoriumsmitglied der Deutschen Bundesstiftung Umwelt (DBU), in Burgdorf. Mit rund 330.000 Euro fördert die DBU ein neues Bildungsprojekt, das das Bionik-Kompetenznetz BIOKON mit der Green Economy Academy (GEA) durchführt. Es sollen Lehrmodule und Unterrichtseinheiten entwickelt werden, die durch Schüler der Berufsbildenden Schulen (BBS) Burgdorf erprobt werden.

Bionik für systemisches Denken

Dass die Bionik fasziniert, systemisches Denken anregt und interdisziplinäres Arbeiten braucht, veranschaulichte BIOKON-Geschäftsführer Dr. Rainer Erb am Beispiel der Haihaut: „Wir Bioniker haben in Fachdisziplin-übergreifender Arbeit den komplexen Bauplan der Haihaut entschlüsselt und daraus einen Silikonanstrich entwickelt. Er vermindert den unerwünschten Unterwasserbewuchs von Schiffsrümpfen durch Algen, Seepocken und Muscheln, das sogenannte Fouling, um bis zu 70 Prozent. Der dadurch verminderte Strömungswiderstand verringert den Treibstoffverbrauch gegenüber auch nur geringfügig bewachsenen Schiffen um bis zu 30 Prozent und kann somit bei großflächigem Einsatz Millionen Tonnen Treibstoff sparen helfen.“ So könnten Umweltbelastungen vermieden und Kosten eingespart werden. Gleichzeitig würden die bisher als Antifouling-Anstrich eingesetzten umweltschädigenden TBT- und Kupferverbindungen ersetzt. „Bionik basiert auf ganzheitlichem Denken, das wir mit neuen Angeboten in der Berufsbildung verankern wollen“, so Erb.

Komplexe Zusammenhänge durch Bionik begreifen

Mit biologischem Hintergrundwissen, technischen Kenntnissen und cleveren Ideen lasse sich wie beim oben genannten Beispiel die Entwicklung nachhaltiger Produkte für die berufliche Bildung interessanter gestalten. Konsumgüter könnten nach Darstellung der DBU sowohl bei der Herstellung als auch in der Nutzungs- und Nachnutzungsphase die Umwelt erheblich belasten. Im Rahmen des beantragten Vorhabens werde dieser Aspekt in den Blick genommen: Ziel sei es, mit Hilfe der Bionik das Interesse zu wecken und komplexe Zusammenhänge besser zu verstehen. Anhand konkreter Modell-Beispiele, insbesondere im Zusammenhang mit Entwicklungen aus mittelständischen Unternehmen, bearbeiten die Schülerinnen und Schüler die Frage, wie sie ein Gebrauchsgut mit Hilfe bionischer Innovationen nachhaltiger machen könnten, erläutert Erb. Die Betrachtung werde ausgeweitet auf den gesamten Produktlebenszyklus. Die Schülerinnen und Schüler könnten dabei verschiedene Optionen etwa in der Lieferkette, in Marketing- und Kommunikation bis hin zum Vertrieb und den damit verbundenen Effekten auf Natur und Umwelt erleben – die Botschaft dahinter: „Auch das Drehen an kleinen Stellschrauben kann bedeutsame große Nachhaltigkeitseffekte erzeugen.“

Durchdachtes Bildungskonzept mit Leitfaden und Lehrerfortbildungen

BBS-Schulleiter Gerhard Klaus hob hervor: „Als Lehrer tragen wir Mit-Verantwortung dafür, dass Folgegenerationen Problemlösekompetenzen entwickeln. Schon frühere Projekte haben an der BBS bewiesen, dass eine praxisnahe Herangehensweise die Motivation der Schülerinnen und Schüler beflügelt und ihnen die Ideen für Neuentwicklungen kaum ausgehen.“ In diesem Zusammenhang sehe er das Projekt der DBU als vielversprechend an. Daher freue er sich, dass die von BIOKON und GEA entwickelten Unterrichtsmodule sowie Lehr- und Lernformate themenübergreifend und interdisziplinär in den BBS Burgdorf erprobt werden.
Darüber hinaus planet BIOKON, dass Schülerinnen und Schüler verschiedener Fachrichtungen eine gemeinsame Projektarbeit zum Thema „Entwicklung und Vertrieb nachhaltiger Gebrauchsgüter“ durchführen. Die Ergebnisse sollen in einem speziellen Leitfaden für Multiplikatoren verbreitet werden. Ergänzend seien drei „Summer Schools“, Lehrerfortbildungen, sogenannte „Massive Open Online Courses“ (Moocs), eine Aufbereitung der Module in virtueller Form im Internet, eine externe Evaluation sowie eine Präsentation der Ergebnisse auf der Hannover Messe und an weiteren Standorten geplant.

>>

Aktuelles // 2. November 2016

Internationaler Bionic Award 2016 für Flüssigkeitstransport nach dem Vorbild der Krötenechse

Der International Bionic Award der Schauenburg-Stiftung geht in diesem Jahr an ein vierköpfiges, interdisziplinär zusammengesetztes Team aus Aachen und Linz. Die mit 10.000 Euro dotierte Auszeichnung erhielten Dr. Philipp Comanns, RWTH Aachen, Kai Winands und Mario Pothen, Fraunhofer-Institut für Produktionstechnologie IPT Aachen, sowie Gerda Buchberger, Johannes Kepler Universität Linz, für ihre herausragende Forschungsarbeit zum Entwicklung von Strukturen, um Flüssigkeiten energieneutral in eine gezielte Richtung auf Oberflächen zu transportieren. Ihr Vorbild: Die texanische Krötenechse.

Mit mikroskopisch kleinsten Kanälen sammelt die texanische Krötenechse Wasser aus ihrer Umgebung. Durch ihre Hautstruktur kann sie es gezielt Richtung Maul transportieren. Das interdisziplinäre Team aus Biologe, Ingenieur, Informatiker und Physikerin hat daraus Funktionsprinzipien abgeleitet und auf Kunststoff- und Metalloberflächen übertragen. Die Innovation kann in der Industrie in vielen Bereichen angewendet werden, ob in Windeln oder als Schmierstoff im Automotor.

„Das Phänomen beruht auf der besonderen Geometrie der Kapillarkanäle. Durch unsere interdisziplinäre Zusammenarbeit im Team konnten wir diese Kanalgeometrie abstrahieren und die Struktur soweit optimieren, dass eine industrielle Fertigung möglich ist und wir Flüssigkeiten gezielt sogar gegen die Schwerkraft transportieren können.“ erklärt der frisch promovierte Biologe und Sprecher des Nachwuchsforscherteams Dr. Philipp Comanns.
BIOKON-Geschäftsführer Dr. Rainer Erb: „In der internationalen Jury hat uns diese herausragende Arbeit besonders überzeugt. Die Anwendung verspricht ein großes Marktpotenzial in vielen Branchen, da der passive, gerichtete Transport von Flüssigkeiten oder Schmiermitteln bei zahlreichen technischen Prozessen erforderlich ist – wir sind gespannt!“

„Interdisziplinäres Arbeiten und konstruktives Querdenken sind Grundvoraussetzungen in der Bionik und auch für Unternehmen die Basis des Erfolgs“, sagt Marc-Georg Schauenburg, Sohn des Stifters des Bionic Awards. „In diesem Jahr waren erneut viele überzeugende Konzepte dabei.“ So wurde zusätzlich ein Team des Karlsruher Instituts für Technologie mit einer Anerkennungsurkunde ausgezeichnet. Maryna Kavalenka, Felix Vüllers und Claudia Zeiger erhielten diese Anerkennung für ihr Projekt „Bioinspired Multifunctional Nanofur for Environmental Applications”.

Die Verleihung fand am 21. Oktober 2016 im Rahmen des Bionik-Kongresses „Patente aus der Natur“ in Bremen statt.

>>

Presse // 25. Oktober 2016

BIOKON mit neuem Vorstand

Turnusgemäß haben die BIOKON-Mitglieder nach drei Jahren ihren neuen Vorstand gewählt. BIOKON-Geschäftsführer Dr. Rainer Erb freut sich, dass im fünfköpfigen Vorstandsteam des interdisziplinären Bionik-Kompetenznetzes auch weiterhin Biologen und Ingenieure, Wissenschaftler und Unternehmensvertreter vertreten sind.

Vorstandsvorsitzende ist Frau Professorin Dr. Antonia Kesel von der Hochschule Bremen. Sie hat dieses Amt bereits in den letzten drei Jahren erfolgreich wahrgenommen. In Bremen leitet sie den internationalen Studiengang Bionik und ist Vorsitzende des VDI-Fachbeirates Bionik und stellvertretende Vorsitzende der VDI-Fachgesellschaft Technologies of Life Sciences.

Stellvertretender Vorstandsvorsitzender ist Markus Hollermann. Er ist Experte für Bionik und Innovationsmanagement bei Altran Deutschland S.A.S. & Co. KG, dem globalen Marktführer in Innovation und High-Tech Engineering Consulting. Außerdem ist Herr Hollermann Gründer und Geschäftsführer des Start-ups „die Bioniker“.

Professor Dr. Ivo Boblan lehrt Elektrotechnik, Aktorik, Robotik und Bionik an der Beuth Hochschule für Technik Berlin. Als Experte für bionische Robotik beschäftigt er sich insbesondere mit nachgiebigen Assistenzsystemen für Anwendungen in der sicheren Mensch-Technik-Interaktion.

Professor Dr. Michael Herdy ist Experte für Bionik im Kompetenzbereich Innovationsmanagement und Technology Watch bei der inpro Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH. Er ist Spezialist für bionische Optimierungsmethoden, insbesondere die Evolutionsstrategie, und Honorarprofessor an der Hochschule für Technik und Wirtschaft Berlin.

Professor Dr. William Megill ist sowohl Ingenieur als auch Biologe. Mit seinem Team und seinen Studierenden an der Hochschule Rhein-Waal entwickelt und baut er Antriebssysteme und Sensoren, für kleine U-Boote und Boote. Unter seiner Leitung nimmt das U-Boot-Team der Hochschule an internationalen Wettbewerben teil.

>>

Forschung // 24. Oktober 2016

Gold Award 2016 in der Kategorie Surface and Technology für die bionische Dreifachverzweigung

Der Technologiedemonstrator einer bionischen Dreifachverzweigung wurde mit dem „Materialica Design&Technology Gold Award“ in der Kategorie „Surface and Technology“ ausgezeichnet. Die dreiarmigen Faserverbundverzweigung wurde in einem neuartigen Flecht-Infiltrations-Verfahren hergestellt, bei dem erstmals die patentierte Technik eines variablen Flechtauges zum Einsatz gekommen ist (Patent Nr. DE 102011006647 B4). Für die Verzweigungsstruktur dienten unter anderem der Drachenbaum (Dracaena marginata) und der Corryokaktus (Corryocactus brachypetalus) als natürliche Vorbilder. Diese Struktur kann als Technologieplattform für Verzweigungselemente in zahlreichen Anwendungsgebieten wie Luft- und Raumfahrbereich, Fahrzeug- und Maschinenbau sowie Architektur und Bauwesen genutzt werden.

Ausgezeichnet wurden Prof. Thomas Speck & Dr. Tom Masselter (Plant Biomechanics Group (PBG) & Botanischer Garten, Universität Freiburg), Prof. Markus Milwich (Hochschule Reutlingen & ITV Denkendorf), Dr. Simon Küppers & Dipl.-Ing. Lena Müller (Institut für Textil- und Verfahrenstechnik (ITV) Denkendorf), Prof. Christoph Neinhuis (Institut für Botanik und Botanischer Garten, TU Dresden) sowie Prof. Maik Gude & Dipl.-Ing. Andreas Gruhl (Institut für Leichtbau und Kunststofftechnik (ILK), Technische Universität Dresden) für ihre Entwicklung einer dreiarmigen Faserverbundverzweigung nach dem Vorbild der Verzweigungen des Drachenbaums.

Inspiriert wurde die Entwicklung durch die Form und die innere Struktur der Verzweigungen des Drachenbaums. Hierbei haben vor allem die Anordnung und der Verlauf der von mechanisch sehr stabilen, verholzten Faserbündeln begleiteten Leitgewebebündel im Bereich der Astanbindung die bionische Umsetzung beeinflusst. Diese Faserbündel zeigen eine lastadaptierte Anordnung und die in den Seitenast führenden Bündel umfassen vor ihrer Abzweigung den Hauptstamm typischer Weise um über 180°. Durch diese innere Struktur können die Seitenäste des Drachenbaums hohe Biegelasten aufnehmen und zeigen im Versagensfall ein gutmütiges Bruchverhalten. Hierbei kommt es zu mehreren Vorversagensereignissen, nach denen sich das System jeweils wieder stabilisiert, wodurch bis zum finalen Versagen große Energiemengen absorbiert werden können („Fail-Safe-Mechanismus“). All diese Eigenschaften, die in der Plant Biomechanics Group Freiburg untersucht wurden, und die ausgeprägte Fasermatrixstruktur des Drachenbaums machten diese Pflanzen zu einem idealen Ideengeber für die Entwicklung einfach und mehrfach verzweigter Faserverbundstrukturen.

Bei der Entwicklung des Geflechts und des Flechtverfahrens im ITV Denkendorf und im ILK der TU Dresden wurde nicht nur Wert auf einen optimal kraftflussgerechten Faserverlauf im Zwickel des Geflechts gelegt. Ziel war es darüber hinaus, ein Geflecht zu entwickeln, bei dem es möglich ist für die Verzweigungsäste in Summe mehr Fäden verwenden zu können, als im Hauptast vorhanden sind, ohne offene Faserenden im Bauteil zu haben. Diese hat den Vorteil Strukturen zu erzeugen, bei denen es einen durchgehenden Hauptpfad gibt von dem, ohne das Bauteil durch das Reduzieren der Faseranzahl im Hauptpfad bzw. durch offene Faserenden von hinzugefügten Fäden zu schwächen. Bei hinzugefügten Fäden würde es außerdem zu einer lokalen Überdimensionierung der Verzweigung kommen. Das Verfahren wurde zum Patent angemeldet (DE 102013223154 A1). Die potentiellen Anwendungsbereiche einer solchen verzweigten, geflochtenen Struktur sind vielfältig und umfassen beispielsweise Fahrzeug- und Maschinenbau, Luft- und Raumfahrt, sowie Architektur und Bauwesen – hier z.B. ausgegossen mit Leichtbauzement.

>>

Forschung // 15. September 2016

Vom Drachenbaum zum Werkstoff

Drachenbäume als Ideengeber für den Leichtbau: Ein Forschungsteam der Universität Freiburg und des Karlsruher Instituts für Technologie (KIT) hat die Grundlagen dafür erarbeitet, technische Faserverbundverzweigungen nach dem Vorbild von Ast-Stamm-Anbindungen zu entwerfen. Mithilfe von hochauflösenden Magnetresonanz-Bildgebungsverfahren ist es den Wissenschaftlerinnen und Wissenschaftlern dabei erstmals gelungen, am lebenden Drachenbaum zu beobachten, wie sich das pflanzliche Gewebe bei Belastung verschiebt. Technische Faserverbundverzweigungen, die sich ähnlich verhalten wie das natürliche Vorbild, könnten künftig zum Beispiel in architektonischen Tragwerken, Fahrradrahmen oder in Autokarosserien zum Einsatz kommen. Das Team hat die Ergebnisse in der Fachzeitschrift „Scientific Reports“ veröffentlicht.  

Für die Studie haben die Arbeitsgruppen von Prof. Dr. Thomas Speck, Leiter der Plant Biomechanics Group und Direktor des Botanischen Gartens der Universität Freiburg, und Prof. Dr. Jan G. Korvink, Leiter des Instituts für Mikrostrukturtechnik am KIT, einen neuartigen Versuchsaufbau entwickelt. Die Biologin Linnea Hesse von der Universität Freiburg und der Medizinphysiker Dr. Jochen Leipold von der Klinik für Radiologie – Medizinphysik des Universitätsklinikums Freiburg bildeten zunächst mithilfe eines Magnetresonanztomographen (MRT) das Innere von Stamm und Ast eines Drachenbaums im unbelasteten Zustand ab. Anschließend belasteten sie den Ast, indem sie ihn mittels eines mechanischen, von außerhalb des MRT gesteuerten Arms verbogen, und bildeten die inneren Strukturen der Pflanze erneut ab. Aus beiden Bildersätzen erstellten die Wissenschaftler dreidimensionale Computermodelle. Anhand dieser konnten sie vergleichen, wie sich das Gewebe, das eine Pflanze stabilisiert, jeweils verhält und wie es sich bei Belastung verschiebt: einerseits die Leitbündel, die Stoffe und Flüssigkeiten innerhalb von Pflanzen transportieren, und andererseits die Faserkappen, die diese Leitbündel umgeben und festigen. Dabei betrachteten die Wissenschaftler sowohl die gesamte Ast-Stamm-Anbindung als auch einzelne Leitbündel, um Veränderungen vom unbelasteten zum belasteten Zustand möglichst genau zu ergründen. Je nach ihrer Lage in der Verzweigung werden die Bündel und die Kappen teilweise längs gedehnt und können so Zuglasten aufnehmen oder auch quer gegen das umliegende Gewebe gedrückt, um Druckkräfte abzudämpfen.  

Auf dieser Basis ist es nun möglich, die wissenschaftlichen Erkenntnisse in technische Faserverbundverzweigungen zu übertragen – mit dem Ziel, sowohl leichte als auch stabile Werkstoffe mithilfe des natürlichen Vorbilds noch weiter zu verbessern.  

Originalveröffentlichung: Hesse, L., Masselter, T., Leupold, J., Spengler, N., Speck, T., Korvink, J.G.: Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. Sci. Rep. 6, 32685; doi: 10.1038/srep32685 (2016).  

Quelle: Presseinformation der Universität Freiburg.

>>