Signet

BIOKON - Das Bionik-Kompetenznetz

Airbus-3D-print-Bauteil-Kabine.JPG.
Die bionische Leichtbau-Kabinentrennwand wurde nach dem Vorbild der Natur 3D-gedruckt.
Bild: Airbus

Aktuelles // 06. Dezember 2016

Airbus A320-Kabinenstruktur nach dem Vorbild der Natur: Bionische Leichtbau-Trennwand mit dem Ecodesign-Preis ausgezeichnet

Für das Konzept einer bionischen Kabinentrennwand hat BIOKON-Mitglied Airbus den Bundespreis Ecodesign in der Kategorie Konzept erhalten. Bundesumweltministerin Barbara Hendricks zeichnete Peter Sander und Bastian Schäfer aus dem Team für Zukunftstechnologien (Emerging Technologies & Concepts) aus.

Die bionische Trennwand nach dem Vorbild aus der Natur von Airbus ist 45 % leichter als herkömmliche Trennwände für Flugzeuge. Durch die Gewichtsreduktion wird Kraftstoff eingespart und die CO2-Emission pro Flugzeug jährlich um 10 Tonnen verringert.

 

Das Design basiert auf generativen Gestaltungs- und Fertigungsverfahren sowie auf der Entwicklung eines eigenen, leichten Legierungsmaterials. Dank der additiven Produktion im so genannten 3D-Druck und des modularen Aufbaus lassen sich die Trennwände auch in bestehende Flugzeugkabinen einbauen. Einzelne Komponenten können bei Bedarf einfach ersetzt werden. Das verwendete Material ist komplett rezyklierfähig.

 

"Airbus zeigt mit der bionischen Trennwand in beispielhafter Weise auf, welche Möglichkeiten generative Fertigung bietet. Im Flugverkehr bedeutet die erreichte Gewichtsreduktion um 45 Prozent eine enorme Kraftstoffersparnis. Die astähnlichen Strukturen bieten einen Ausblick auf das formalästhetische Potential der topologischen Optimierung", so Prof. Matthias Held, Mitglied der Jury des Bundespreises Ecodesign.

"Bionisches Design und additive Fertigungsverfahren spielen eine Schlüsselrolle bei der Flugzeugentwicklung und -fertigung der Zukunft, wo sich fast alles um Gewichtsreduktion dreht", gratulierte Dr. Klaus Richter, Vorsitzender der Geschäftsführung Airbus in Deutschland dem Entwicklungsteam der Airbus Operations GmbH.

 

Die bionische Trennwand hat Airbus gemeinsam mit dem US-Softwarehersteller Autodesk entwickelt. Seit mehreren Jahren arbeitet Airbus bereits daran, additive Fertigungsverfahren und 3D-Druck für die Flugzeugfertigung nutzbar zu machen. Weitere Beispiele hierfür sind neben der Kabinentrennwand auch Kabinenhalter, Bremsklappen oder Rohrleitungen.

ThinkstockPhotos-124816712
Die Paradiesvogelblume (Strelitzia reginae) - wunderschön und Ideengeberin für den Flectofin®-Klappmechanismus ohne verschleißanfällige Gelenke und Scharniere.
Bild: Thinkstock Photos.

Aktuelles // 31. Januar 2018

Immer besser

Nobody is perfect. Oder doch? Seit 3,8 Milliarden Jahren optimiert sich die Natur selbst. Und das überaus erfolgreich. Die Evolution „produziert“ nur Sieger, die sich einen Tick besser als ihre Vorgänger an verändernde Lebensumstände anpassen. Das ist jedes Mal ganz nah an der Vollkommenheit – bis sich eine weitere Optimierungsmöglichkeit bietet.

 

Was braucht es, damit Sie diesen Text mit Vergnügen und Erkenntnisgewinn lesen? Etwa 20 Watt. Soviel steckt in gerade einmal zwei großen Bananen, deren Energie ausreicht, um pro Tag die 86 Milliarden Nervenzellen und zehnmal so viele Helferzellen unseres Gehirns in Gang zu halten. Würden wir alle Nervenbahnen, die für die Entstehung eines Gedankens notwendig sind, aneinanderreihen, ergäbe sich eine Länge von 5,8 Millionen Kilometern. So kann eine einzige Nervenzelle mit bis zu 10.000 anderen Nervenzellen verschaltet sein, kommunizieren und so komplexeste neuronale Muster, wie Aha-Erlebnis, Liebe oder Trauer entstehen lassen.

 

Keine Frage: Der Mensch ist ein Wunderwerk – auf seinem Weg vom Primaten über den Neandertaler und Homo Sapiens zum „Homo Digitalis“ der Gegenwart in seiner Wahrnehmungs- und Handlungsfähigkeit maximal effizient ausgerüstet. Da kommen selbst heute die größten und besten Hochleistungsrechner des Big-Data-Zeitalters nicht mit.

 

Das Gehirn und seine evolutionäre Entwicklung ist nur eines von zahllosen Beispielen für den Drang in der Natur nach permanenter Verbesserung durch Anpassung an die Herausforderungen und Vollendung. Diesen macht sich die Bionik, die Verbindung von Biologie und Technik, zu eigen. Den Klettverschluss, der aus der Beobachtung und dem Verstehen der notorisch „anhänglichen“ Klettpflanze hervorging, kennt mittlerweile (fast) jedes Kind auf der ganzen Welt.

 

Ein weiteres Beispiel liefern die Optimierungsprogramme von Professor Claus Mattheck und seiner Arbeitsgruppe in der Abteilung Biomechanik am Karlsruher Institut für Technologie (KIT). Dort haben die Bioniker die Prinzipien, wie Bäume und Knochen sich entwickeln und sich dabei selbst an sich verändernde Lastfälle anpassen, früh erkannt und sukzessive auf die Optimierung von Bauteilen hinsichtlich Leichtbau und Dauerfestigkeit übertragen. Heute ist mittlerweile in nahezu allen wesentlichen Leichtbau-Innovationen in der Automobil- und Luftfahrtindustrie immer auch ein Stück Bionik eingearbeitet.

 

Oder die Organisationsbionik: Sie liefert über das Schwarmverhalten von Ameisen oder Fischen wichtige Erkenntnisse für das autonome Fahren oder die Steuerung hochkomplexer logistischer Systeme.

 

Es liegt in der „Natur“ der Bionik, Problemlösungen über Perspektivwechsel herbeizuführen, dazu immer einen ganzheitlichen Blick einzunehmen und disziplinübergreifend zu arbeiten. Eine Grundvoraussetzung dafür ist Achtsamkeit. Die Wissenschaft schätzt, dass es auf der Erde zehn bis 20 Millionen Arten gibt. Davon sind gerade einmal 1,75 Millionen Arten erfasst und beschrieben. Umso problematischer ist der fortschreitende Artenrückgang. Artenverlust lässt den „Ideenpool“ unwiederbringlich austrocknen.

 

Fest steht: Nur durch Erhalt der biologischen Vielfalt können Wissenschaftler und Ingenieure auch künftig all den genialen Vorbildern der Natur nachspüren, die Vielfalt an ressourceneffizienten Funktionsprinzipien von Pflanzen und Tieren verstehen und in innovative Technik umsetzen. Wohl wissend, dass bei aller Genialität noch besser werden immer eine Option ist. Jedenfalls dann, wenn wir weiter genau hinsehen und unseren Verstand und unser Vorstellungsvermögen bestmöglich aktivieren. Zwei Bananen können dabei schon sehr hilfreich sein.

ImpulsB_Cover-Ausschnitt
3,8 Milliarden Jahre Innovationsvorsprung auf 24 Seiten - IMPULS B

Presse // 21. Dezember 2017

IMPULS B – Bionik Business Cases aus der Natur

Neu: das erste Unternehmensmagazin für Innovatoren, die auf 3,8 Milliarden Jahre Evolutionserfahrung bauen 

 

Vorsprung durch Bionik: Technische Innovationen und Best Practices nach dem Vorbild der Natur stehen im Mittelpunkt von IMPULS B, dem neuen Unternehmensmagazin von BIOKON, der Forschungsgemeinschaft Bionik-Kompetenznetz e. V.

 

Auf 24 Seiten dreht sich alles um die intelligente Verbindung von Natur und Technik, mit der es forschenden Unternehmen gelingt, im engen Schulterschluss mit der Wissenschaft ihre Innovations- und Wettbewerbsfähigkeit so voranzubringen, dass sie auf ihren Kernmärkten nachhaltig erfolgreich sind und mittel- und langfristig den Wert ihrer Marke bei Kunden und Mitarbeitenden steigern.

 

Bionisch inspirierte Leichtbaustrukturen im Flugzeug- und Fahrzeugbau setzen dabei genauso neue Bestmarken wie eine vollkommen neue Formen- und Materialsprache in der Architektur oder bisher nicht für möglich gehaltene Ausprägungen der Mensch-Maschinen-Kooperation. „Die gezeigten Beispiele aus der Bionik überraschen, begeistern und laden Innovatorinnen und Innovatoren zum Dialog mit BIOKON und dem Unternehmensforum des Bionik-Kompetenznetzes ein“, erklärt BIOKON-Geschäftsführer Dr. Rainer Erb.

 

Den „roten Faden“ von IMPULS B bilden Megatrends und sich verändernde Lebenswelten, die Unternehmen im 21. Jahrhundert besonders herausfordern: Mobilität & Logistik, Energie- & Ressourceneffizienz, Forschung & Entwicklung, Vernetzung & Digitalisierung sowie Leben & Arbeiten. Kleine Features, Portraits und Experten-Interviews vermitteln dazu ein überaus lebendiges Bild von der Bionik als Impulsgeber für echte Innovationssprünge.

 

„Bionik ist Hightech-Forschung und heute gefragt wie nie. Denn sie spielt mit Hilfe der Natur und mit allen erdenklichen Algorithmen auf Basis der Benchmarks von 3,8 Milliarden Jahren Evolutions-Optimierung die gesamte Innovationsklaviatur“, erklärt Erb. Viele Unternehmen nutzten diesen Vorsprung bereits für ihre eigene technologische Forschung und Entwicklung. IMPULS B zeige exemplarisch, wie Akteure aus den unterschiedlichsten Branchen im engen Verbund mit der Wissenschaft herausragende, zum Teil revolutionäre Innovationen in Gestalt von neuen Produkten und Organisationsstrukturen auflegten. „Diese Impulse aus der Bionik haben oft das Zeug, Branchen und Märkten ganz neue Richtungen zu weisen“, so der BIOKON-Geschäftsführer. „IMPULS B bringt dies auf den Punkt und macht Lust auf Zukunft.“

 

IMPULS B gibt es hier als PDF >> 

Materialica_Gold_Award_„Surface_and_Technology“_
Das Preisträger-Team um Christoph Neinhuis (2 v.r.).
(c) TU Dresden

Aktuelles // 22. November 2017

Materialica Gold Award 2017 für neuartige Oberflächen

Forscher vom Institut für Botanik der TU Dresden wurden am 17. Oktober 2017 in München mit dem Materialica Gold Award im Bereich „Surface and Technology“ ausgezeichnet. BIOKON-Mitglied Professor Dr. Christoph Neinhuis und sein Mitarbeiter Dr. Wilfried Konrad entwickelten zusammen mit Dr. Jörg Adam vom VDEh-Betriebsforschungsinstitut in Düsseldorf, sowie Siegfried Konietzko von der Firma Hundt & Weber (Lebronce-Alloys) in Siegen eine neuartige Oberfläche für Bauteile im Hochtemperaturbereich.

 

Ziel der Entwicklung war die Verbesserung der Standfestigkeit von Blasformen im Hochofen, wodurch sich ein enormes Potenzial für die Einsparung von Rohstoffen und Energie ergibt. Durch die Blasformen wird heiße Luft mit etwa 1200 Grad Celsius in den Hochofen gepresst, während sich in unmittelbarer Umgebung flüssiges Eisen mit bis zu 2300 Grad Celsius befindet. Daher müssen die aus Kupfer bestehenden Blasformen ständig aufwändig gekühlt werden. Trifft flüssiges Roheisen auf die Oberfläche der Form, kann diese zusätzliche Hitze oft nicht abgeführt werden und die Blasform wird beschädigt oder brennt im Extremfall durch.

 

Durch die neuartige Oberfläche, die sich an den wasserabstoßenden Eigenschaften zahlreicher biologischer Oberflächen orientiert, perlt flüssiges Roheisen von der Blasform ab, die sich daher kaum aufheizt, wodurch die Gefahr der Beschädigung und des Durchbrennens deutlich verringert wird. Damit reduzieren sich auch Stillstandszeiten am Hochofen und nachfolgend im Stahl- oder Walzwerk.

 

Die Auszeichnung wurde im Rahmen der Messe eMove 360 in München verliehen. Das Kooperationsprojekt wird vom Bundesministerium für Wirtschaft und Technologie gefördert.

Quelle: Internetauftritt der TU Dresden, Anne Göhre

AVK-Preis
Das Preisträger Team erhielt den Bronze-AVK-Innovationspreises 2017 für die bionische Fassadenverschattung Flectofold.

Aktuelles // 02. Oktober 2017

Fleischfressende Pflanze inspiriert Architektur

Für die Entwicklung der bionischen, gelenkfreien Fassadenverschattung „Flectofold“ nach dem Vorbild der fleischfressenden Wasserfalle (Aldrovanda vesiculosa) sowie der Streifenwanze (Graphosoma italicum) ist ein Konsortium verschiedener Arbeitsgruppen aus Stuttgart, Freiburg, Denkendorf und Tübingen am 18. September 2017 mit dem dritten Platz des AVK-Innovationspreises 2017 in der Kategorie „Forschung/Wissenschaft“ ausgezeichnet worden. Die AVK (Industrievereinigung Verstärkte Kunststoffe e. V. und AVK-TV GmbH) prämiert im Rahmen des „International Composites Congress“ in Stuttgart alljährlich herausragende Innovationen im Bereich Faserverstärkte Kunststoffe (FVK) / Composites. Besonderer Wert wird dabei auf das Thema Nachhaltigkeit gelegt.

 

Der Flectofold ist eine hinsichtlich Bewegungsprinzip und Materialstruktur biologisch inspirierte gelenklose Fassadenverschattung für doppelt gekrümmte, komplexe Außenfassaden. Als biologische Ideengeber wurden die fleischfressende Wasserfalle (Aldrovanda vesiculosa) und die Streifenwanze (Graphosoma italicum) herangezogen. Inspiration für den gelenkfreien und effizienten Bewegungsmechanismus des Flectofolds war die schnelle Fangbewegung von Aldrovanda, welche anhand von Hochgeschwindigkeitsaufnahmen analysiert wurde. Die Bewegung wurde in mehreren Schritten abstrahiert und als „curved-line-folding“-Prinzip in die Technik übertragen. Hier sind zwei steife Flügel und eine steife, elliptisch geformte Mittelrippe durch eine Biegezone mit geringerer Steifigkeit verbunden. Die Durchbiegung der Mittelrippe initiiert das Auf- und Zuklappen der Flügel. Mittels computergestützten Simulationen konnte gezeigt werden, dass der Radius der Mittelrippe die für die Bewegung notwendige Aktuierungsenergie und gleichzeitig die Stabilität unter Wind- und Schneelasten bestimmt. Beim Flectofold wurde diesbezüglich auf ein ausgewogenes Verhältnis geachtet. Die funktionelle Morphologie des Wanzenflügels, welche ein gelenkloses Falten ermöglicht, wurde mittels verschiedener mikroskopischer Methoden untersucht. Die Resultate gaben Aufschluss über mögliche Gestaltungsrichtlinien für den Laminataufbau von faltbaren Faserverbundkunststoffen.

 

Der Flectofold wurde ursprünglich als Fassadenverschattungssystem insbesondere für doppelt gekrümmte Außenfassaden konzipiert. Das Funktionsprinzip lässt sich prinzipiell aber überall in der Technik einsetzen, wo bewegliche und wartungsarme Klapplamellen oder Regler benötigt werden, wie sie etwa in Lüftungsklappen, Öffnungs- oder Schließklappen oder adaptiven Klappmechanismen für Luft- und Raumfahrttechnik vorkommen. In diesem Zusammenhang ist vor allem die Bewegungsverstärkung basierend auf dem „curved-line-folding“ interessant, bei der eine relativ geringe Verformung der Mittelrippe zu einer großen Bewegung der Flügel führt. Der Flectofold wird mit einem pneumatischen, textilen Kissen, das hinter der Mittelrippe liegt, aktuiert. Durch Aufbau von lediglich 0,3 bar Luftdruck im Kissen werden im Flectofold große Bewegungen realisiert, die mit keinem anderen heutigen technischen System erreicht werden können. Herkömmliche Verschattungssysteme bestehen im Gegensatz zum Flectofold aus mehreren Einzelteilen, die über mechanische Gelenke miteinander verbunden sind. Je komplexer die Krümmungen der Außenfassaden, desto mehr Verbindungselemente sind erforderlich. Die häufigste Versagensursache solcher Systeme ist mechanischer Abrieb in den Gelenken, wodurch die Dauerfestigkeit der Systeme herabgesetzt und Wartungen notwendig sind. Der Flectofold kommt ohne Gelenke aus, so dass das gesamte System störungs- und wartungsarm betrieben werden kann.

 

Das Preisträger-Team :
Prof. Dr. Thomas Speck, Dr. Simon Poppinga & M.Sc. Anna Westermeier (Plant Biomechanics Group Freiburg/Botanischer Garten der Universität Freiburg), M.Sc. Larissa Born (ITFT Universität Stuttgart), Prof. Dr. Götz Gresser & Prof. Dr. Markus Milwich (Institut für Textil- und Verfahrenstechnik (ITV) Denkendorf), Prof. Dr. Manfred Bischoff & M.Sc. Renate Sachse & (IBB Universität Stuttgart), Prof. Dr. Jan Knippers, M.Sc. Axel Körner, M.Sc. Anja Mader, M.Sc. Saman Saffarian & Dipl.-Ing. Gundula Schieber & (ITKE Universität Stuttgart) und Prof. Dr. Oliver Betz & M.Sc. Paavo Bergmann (Universität Tübingen).

Dr. Rainer Erb und Jessica Rudolph

Kontakt

Geschäftsstelle

BIOKON - Bionik-Kompetenznetz

 

Dr. Rainer Erb | Geschäftsführer

Jessica Rudolph | Assistentin des Geschäftsführers

 

Ackerstraße 76

13355 Berlin 

Tel. +49.(0)30.46 06 84 84

E-Mail: kontakt@biokon.de