BIOKON – Network of the Future

Veranstaltungen: Bionik kompakt

Staunen ist die Sehnsucht nach Wissen
Thomas von Aquin, Philosoph und Theologe

Die Wissenschaft kennt heute zirka 1,7 Millionen Arten von Lebewesen. Sie und ihre Entwicklung in der belebten Natur schaffen einen unerschöpflichen Fundus an Ideen und Vorbildern für technische Entwicklungen. In Ausstellungen, Botanischen Gärten, Zoos und Museen, ist innovative Forschung verortet. Hier wird Bionik greifbar und eindrucksvoll erlebbar.

Print

Presse // 5. June 2015

Durchsichtige Schmetterlingsflügel als Vorbild für reflexionsarme Displays

Der Effekt ist vom Handy bekannt: In der Sonne spiegelt das Display, man erkennt fast nichts mehr. Geschickter stellt sich der Glasflügel-Schmetterling an: Trotz durchsichtiger Flügel reflektiert er kaum Licht und ist dadurch im Flug für Fressfeinde beinahe unsichtbar. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) um Hendrik Hölscher fanden heraus, dass unregelmäßige Nanostrukturen auf der Oberfläche des Schmetterlingsflügels die geringe Reflexion bewirken. In theoretischen Experimenten konnten sie den Effekt nachvollziehen, der spannende Anwendungsmöglichkeiten, etwa für Handy- oder Laptop-Displays eröffnet.

Durchsichtige Materialien, wie etwa Glas, reflektieren immer einen Teil des einfallenden Lichtes. Einigen Tieren mit durchsichtigen Oberflächen, etwa der Motte bei ihren Augen, gelingt es, die Reflexionen sehr gering zu halten. Häufig aber nur dann, wenn man senkrecht auf diese Oberflächen blickt. Die Flügel des Glasflügler-Schmetterlings, der hauptsächlich in Mittelamerika verbreitet ist, reflektieren aber auch dann nur schwach, wenn man schräg auf die Flügel blickt. Je nach Blickwinkel sind das nur zwischen zwei und fünf Prozent des einfallenden Lichtes. Zum Vergleich: Eine Glasscheibe wirft, je nach Blickrichtung, zwischen acht und 100 Prozent zurück, also ein Vielfaches des Schmetterlingsflügels. Dabei reflektiert der Flügel nicht nur das gesamte für den Menschen sichtbare Spektrum schwach, sondern unterdrückt auch – überlebenswichtig für den Schmetterling – die für Tiere wahrnehmbaren Infrarot- und Ultraviolett-Wellen.

Um diesem bisher unerforschten Phänomen auf den Grund zu gehen, untersuchten die Wissenschaftler den Flügel des Glasflüglers unter dem Rasterelektronenmikroskop. Vorherige Studien zeigten, dass bei anderen Tieren regelmäßige säulenförmige Nanostrukturen für die geringen Reflexionen verantwortlich sind. Auch bei den Schmetterlingsflügeln fanden die Forscher Nanosäulen, allerdings waren diese im Gegensatz zu den bisherigen Funden gänzlich unregelmäßig angeordnet und auch unterschiedlich groß. Die typische Höhe der Säulen variiert zwischen 400 und 600 Nanometern und der Abstand zwischen den Säulen zwischen 100 und 140 Nanometern. Das entspricht etwa einem Tausendstel des menschlichen Haares.

In theoretischen Experimenten haben die Forscher diese Unregelmäßigkeit der Nanosäulen in Größe und Anordnung mathematisch abgebildet und konnten zeigen, dass die berechnete reflektierte Lichtmenge für unterschiedliche Blickwinkel genau der beobachteten Menge entspricht. Damit belegten sie, dass eben diese Unregelmäßigkeit der Nanosäulen die geringe Reflexion bei unterschiedlichen Betrachtungswinkeln bewirkt. Für Hölschers Doktoranden Radwanul Hasan Siddique, der den Effekt entdeckte, ist der Glasflügler ein faszinierendes Tier: „Nicht nur optisch mit seinen durchsichtigen Flügeln, sondern auch wissenschaftlich, da er sich im Gegensatz zu anderen Naturphänomenen, bei denen Regelmäßigkeit oberstes Gebot ist, scheinbares Chaos zunutze macht und damit auch für den Menschen spannende Effekte erzielt.“

Die Ergebnisse eröffnen eine ganze Fülle von Anwendungsmöglichkeiten überall dort, wo schwach reflektierende Oberflächen gebraucht werden, etwa bei Brillengläsern oder Handydisplays. Die Infrastruktur am Institut für Mikrostrukturtechnik ermöglicht neben der theoretischen Erforschung des Phänomens auch die tatsächliche Umsetzung in die Praxis. Erste Anwendungsversuche befinden sich momentan in der Konzeptionsphase, Experimente an Prototypen konnten aber bereits jetzt zeigen, dass diese Art der Oberflächenbeschichtung auch wasserabweisend und selbstreinigend wirkt.

Quelle: Presseinformation 037/2015 des KIT

Die Ergebnisse haben die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Nature Communications veröffentlicht: DOI: 10.1038/ncomms7909

>>

Presse // 4. June 2015

Bionik-Netzwerk unterstützt Flugzeugbau der Zukunft

BIOKON, das deutschlandweite Bionik-Kompetenznetz, präsentierte auf der Hannover Messe 2015 auf dem Bionik-Gemeinschaftsstand zusammen mit acht Mitausstellern die neuesten Bionik-Entwicklungen. „Deutsche Unternehmen erkennen zunehmend die Chance, durch Bionik – das Übertragen von biologischen Funktionsprinzipien auf technische Herausforderungen – ihre Produkte zu optimieren“, sagte Dr. Rainer Erb, BIOKON-Geschäftsführer. Deswegen fand ein reger Austausch zum Leitthema bionischer Leichtbau und 3D-Druck auf dem BIOKON-Stand statt.

„Airbus als BIOKON-Mitglied und Mitaussteller hat als einer der weltweit führenden Hersteller für Zivilflugzeuge gezeigt, wie die Verknüpfung von additiven Fertigungstechniken mit bionischen Strukturen beispielsweise im Rumpf des Airbus-Concept Plane in der Praxis gelingt, weil Ressourceneffizienz und funktionales Design elementare Entwicklungsinhalte des Unternehmens sind“, so Michael Sillus, Emerging Technologies and Concepts bei Airbus Deutschland. Die Bionik bietet vielfältige Konstruktionsideen bis hin zum Leichtbau für das energieeffiziente Flugzeug der Zukunft. Das 3D-Drucken hat gerade für ein weltweit agierendes Unternehmen wie Airbus zahlreiche Vorteile im Hinblick auf Produktion und Logistik und erlaubt nunmehr auch, die neuartigen komplexen und innovativen Bionik-Strukturen zu fertigen.

Airbus geht in den Austausch mit Partnern aus Wissenschaft und Wirtschaft von BIOKON, weil ein Netzwerk mit externen Kompetenzträgern der Schlüssel zum Erfolg ist. Zusammen mit der Pumacy Technologies AG wird dafür aktuell ein internes, abteilungsübergreifendes Netzwerk zum Thema Bionik aufgebaut, um die Entwicklung von multi-funktionalen Bauteilen zu forcieren.

Pumacy unterstützt Airbus bereits seit über 15 Jahren in den Bereichen Wissens- und Innovationsmanagement. Mit der Bionik als weitere Kompetenz werden nun beide Disziplinen miteinander verknüpft. Neues Wissen aus der Natur wird mit bestehenden Erfahrungen kombiniert und münden so erfolgreich in neue Ideen und Prototypen. Bionik lässt sich somit im weiteren Sinne als „Wissenstransfer von der Natur auf die Technik“ beschreiben und wird bereits in vielen unterschiedlichen Bereichen bei Airbus angewendet. 

Die Zusammenarbeit des Flugzeugherstellers im BIOKON-Netzwerk ist ein gutes Beispiel dafür, wie auch andere Unternehmen von der Kompetenz des Netzwerkes profitieren können. Mit internen Strukturen, welche auch durch Bionik-Experten von Pumacy begleitet werden, können so neue Entwicklungen möglich gemacht werden. Das Lernen von der Natur ist immer ein interdisziplinärer Ansatz, bei dem der richtige Umgang mit Wissen und Kommunikation den entscheidenden Entwicklungsvorsprung liefert.

>>

Presse // 11. March 2015

„Wir lernen von den Siegern der Evolution“

Was wir Menschen von der Natur lernen können, wenn es um das effiziente Nutzen von Energie geht, wurde im Kundenmagazin des Energieverbundes Mittleres Ruhrgebiet als Schwerpunktthema präsentiert − mit praktischen Beispielen aus der Region, überwiegend von BIOKON-Mitgliedern.

 

Bionik und Energieeffizienz war auch Thema in dem kurzen Interview „drei Fragen an BIOKON-Geschäftsführer Dr. Rainer Erb“:

 

Warum sind gerade technische Lösungen aus der Natur so nachhaltig?

 

Jedes jetzt existierende Lebewesen ist ein Sieger der Evolution. Es ist auf Material- und Energieeffizienz angewiesen, um in seinem Umfeld zu überleben. Wir Bioniker lernen also von den Besten. Nehmen wir den Pinguin. Ein Kilo Krill reicht ihm, um im Polarwasser pro Tag 100 Kilometer zurückzulegen. Mit der Energie aus einem Liter Benzin könnte er 1.500 Kilometer weit schwimmen. Seine strömungsoptimierte Form − wellenförmige Konturen, spindelförmiger Rumpf − erlaubt ihm eine extrem energieeffiziente Art der Fortbewegung. Die Strömungsoptimierung versuchen die Hersteller von Autos, Schiffen und Flugzeugen ähnlich für sich zu nutzen. Anders als beispielsweise Unterwasserfahrzeuge wird ein Auto zwar niemals aussehen wie ein Pinguin, denn mit dieser Form könnte es andere Anforderungen wie Fassungsvermögen und Fahrgastschutz nicht erfüllen, die Erkenntnisse werden aber sehr wohl genutzt, um deren Energieeffizienz und Wirtschaftlichkeit, Stichwort cw-Wert, zu verbessern

 

Wie hat man sich die interdisziplinäre Zusammenarbeit der Bionikexperten vorzustellen?

 

Sehr gut, äußerst bereichernd. Unser Netzwerk BIOKON ist Schnittstelle und Makler zwischen der Wissenschaft und Unternehmen mit ihren technischen Fragestellungen. Wenn man die Richtigen zusammenbringt, dann läuft der Innovationsmotor auf Hochtouren und es entstehen kreative Ideen, die auch ruckzuck angewendet werden. Man muss sich nur auf die jeweils andere Disziplin einlassen. Durch vertrauensvolle Kooperation wollen wir den ungehobenen Schatz von Ideen aus der Natur gemeinsam bergen.

 

Was erhoffen Sie sich von der Bionik speziell im Bereich Energieeffizienz?

 

Die ist ein großes Thema in vielen bionischen Entwicklungsbereichen. So verfolgen Auto- und Luftfahrtunternehmen den Leichtbau mit Hochdruck, weil eingesparte Kilos weniger Sprit und Emissionen bedeuten. Bauteile, die sich in Struktur und Materialeinsatz an der Natur orientieren, sind leichter und stabiler. Der 3D-Druck − der schichtweise Aufbau von Produkten − erlaubt uns hier Formen und Präzision, die mit den bisherigen Verfahren nicht möglich waren. Das heißt, dass man etwa durch computerunterstützte Optimierung Überflüssiges weglassen und Material speziell für Lastfälle einsetzen kann. Von der 3D-Technik erwarten wir noch echte Quantensprünge für weitere nachhaltige Anwendungen der Bionik.

 

Quelle: Stadtwerke Bochum, Meine Stadtwerke, Ausgabe 1/2015 ( >>

Uncategorized // 21. February 2015

BIOKON präsentiert bionischen Leichtbau und 3D-Drucken als Leitthema auf der Hannover Messe 2015

Auf der Hannover Messe, der weltweit größten und wichtigsten Industriemesse vom 13. bis. 17. April 2015, organisiert BIOKON auch in diesem Jahr wieder den traditionellen Bionik-Gemeinschaftsstand. Unter dem Leitthema bionischer Leichtbau und 3D-Drucken präsentieren neun Mitaussteller in der Innovationshalle der Messe „Research and Technology“ zukunftsfähige und nachhaltige Forschungsergebnisse und Produkte der Bionik.

Bionische Innovationen zu Wasser, zu Lande und in der Luft

Airbus zeigt ein Flugzeug der Zukunft mit bionischen Strukturelementen − leichter und strömungsoptimiert. Mit einem nach bionischen Prinzipien entwickeltes U-Boot, mit dem Studierende der Hochschule Rhein-Waal als einziges deutsches Team am internationalen U-Boot-Rennen in Washington D.C. teilnehmen werden, sowie bionischen Leitbau-Lösungen für Auto und Fahrrad werden weitere Beispiele für ressourceneffiziente Entwicklungen nach dem Vorbild der Natur gezeigt.

Innovationspartnerschaften auf dem BIOKON-Stand

Folgende Mitaussteller werden sich auf dem BIOKON-Stand in Halle 2, Stand A01 präsentieren: Airbus Operations GmbH, Alfred-Wegner-Institut, Electrofluidsystems, Westfälische Hochschule – Campus Bocholt, Hochschule Bremen, Hochschule Rhein-Waal, Karlsruher Institut für Technologie, Pumacy Technologies AG und Technische Universität Berlin.

Im Tech Transfer Forum der Messe stellen die BIOKON-Akteure ihre Neuheiten zudem in vier Bionik-Vortragssessions vor. Und auch in der Night of Innovations am Eröffnungsabend der Messe am 13. April sind die Bionik-Innovationen nicht wegzudenken.

>>

Presse // 26. January 2015

Erste Honorarprofessur der Hochschule Rhein-Waal für Julian Vincent

Am Freitag, den 23. Januar 2015 ernannte die Hochschule Rhein-Waal Herrn Prof. Dr. Julian Vincent, Lehrbeauftragter für „Ontology in Biomimetics, Biomimetic Product Design“, für seine außerordentlichen Verdienste zum ersten Honorarprofessor der Fakultät Technologie und Bionik.

Prof. Vincent gilt als einer der Pioniere auf dem Gebiet der Bionik und Biomimetik, genießt einen exzellenten Ruf als Experte, hat bereits zahlreiche Patente angemeldet und verschiedene Ehrungen von Universitäten und Forschungseinrichtungen erhalten. An der Hochschule Rhein-Waal entwickelte er das Curriculum des Masterstudiengangs „Bionics/Biomimetics“ mit und lehrt seit drei Semestern an der Fakultät Technologie und Bionik. „Der Bereich Bionik spielt als übergreifende Disziplin in fast allen Studiengängen unserer Fakultät eine große Rolle. Wir sind froh, mit Herrn Prof. Vincent einen exzellenten Wissenschaftler und Lehrenden an unserer Hochschule willkommen zu heißen, der in herausragender Weise die fachlichen und interdisziplinären Anforderungen seines Fachgebiets vermittelt“, sagt der Dekan der Fakultät Technologie und Bionik Prof. Dr.-Ing. Thorsten Brandt.

Als weltweit renommierter Wissenschaftler auf dem Gebiet der Bionik und Biomimetik gründete Prof. Vincent, der damals im Department of Zoology an der University of Reading tätig war, gemeinsam mit Prof. George Jeronimidis aus dem Department of Engineering im Jahr 1991 das weltweit erste Zentrum für Biomimetik. Die erfolgreiche Einrichtung begann mit 15 Forschern und Mitarbeitern und wurde zu 60 Prozent durch Unternehmen teilfinanziert. Inzwischen hat das Zentrum zahlreiche interdisziplinäre Projekte in vielen Forschungsgebieten durchgeführt und eine Fülle an Forschungsergebnissen veröffentlicht.

Außerdem leitete Prof. Vincent eine Vielzahl von internationalen Forschungsseminaren, ist Mitglied in verschiedenen Forschungsgruppen und publizierte zahlreiche Fachartikel. „Das sich gegenseitig ergänzende Zusammenspiel von Hochschule und Wirtschaft, von Studierenden, Hochschullehrenden und Industriefachkollegen war und ist eines meiner wichtigsten Ziele. Mein Bestreben ist es, die Studierenden möglichst praxis- und zukunftsorientiert sowie fachlich kompetent und breit aufgestellt auf ihren Berufseintritt vorzubereiten“, sagt Prof. Vincent.

Die Übergabe der Verleihungsurkunde an Prof. Vincent wurde durch die Präsidentin der Hochschule Rhein-Waal, Frau Prof. Dr. Marie-Louise Klotz, vorgenommen. Die Laudatio hielt der Dekan der Fakultät Technologie und Bionik, Prof. Brandt.

Quelle: Pressemitteilung der Hochschule Rhein-Waal

>>

Forschung // 22. December 2014

Mikromuscheln als Mini-Roboter für die Medizin

Mikro- oder gar Nano-Roboter könnten im menschlichen Organismus künftig einmal medizinische Dienste verrichten. Diesem Ziel sind Forscher, unter anderem vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, nun einige Schritte näher gekommen. Es ist ihnen nämlich gelungen, Schwimmkörper zu konstruieren, die erstmals gleich zweierlei erfüllen: Sie wären klein genug für einen Einsatz in Körperflüssigkeiten oder sogar in einzelnen Körperzellen. Und sie sind so gebaut, dass sie sich in Flüssigkeiten durch ihre eigene Bewegung selbstständig fortbewegen könnten.

1966 erschien der Film „Die phantastische Reise“. Ein U-Boot wird darin samt Personal so sehr verkleinert, dass es sich durch einen menschlichen Körper bewegen und die Besatzung im Gehirn eine Operation durchführen kann. Bis heute ist das Sciencefiction, und der Transport eines OP-Teams zu einem Krankheitsherd wird es sicher auch bleiben. U-Boote, die sich durch den Körper manövrieren lassen, könnten dennoch von großem Nutzen sein: Sie könnten einen pharmazeutischen Wirkstoff gezielt an einen bestimmten Punkt etwa in der Netzhaut bringen. Oder ein medizinisches Gerät punktgenau im Organismus platzieren. Und sie könnten es ermöglichen, eine Gentherapie gezielt an einer bestimmten Zelle vorzunehmen.

Wenn es nach Peer Fischer, Leiter der Arbeitsgruppe „Mikro-, Nano- und Molekulare Systeme“ am Max-Planck-Institut für Intelligente Systeme in Stuttgart, geht, können Mediziner in absehbarer Zukunft auf Mikro- oder sogar Nano-Roboter zurückgreifen, um solche Aufgaben zu erfüllen. Die kleinen Helfer sollen die gewünschten Ziele im Körper akkurat ansteuern, ohne dass ein größerer operativer Eingriff nötig wäre.

Im Wasser käme eine Mikromuschel mit symmetrischen Bewegungen nicht voran

Bei diesem Vorhaben gibt es allerdings zwei grundlegende Herausforderungen. Natürlich müssen solche Vehikel ausreichend klein sein, um zum Beispiel per Spritze in den Augapfel injiziert werden zu können. Zum anderen müssen sie sich, einmal in den Körper gebracht, dort auch in der gewünschten Weise und Richtung fortbewegen können. In beiderlei Hinsicht melden Forschergruppen um Peer Fischer nun Fortschritte.

Gemeinsam mit Forschern am Technion in Israel und an der TU Dortmund hat die Stuttgarter Gruppe in einer aktuellen Arbeit eine Art künstliche Muschel entwickelt, die nur wenige Hundert Mikrometer groß ist. Diese haben die Wissenschaftler so konstruiert, dass sie sich in Testflüssigkeiten durch einfaches Öffnen und Schließen der Muschelschalen fortbewegt. Das ist nicht so selbstverständlich, wie es zunächst klingt. „Die Muschel ist ja nur wenige Male größer, als ein menschliches Haar dick ist“, erklärt Fischer. „Für die ist eine Flüssigkeit wie Wasser also etwa so zäh wie für uns Honig oder gar Teer.“ Und bei so hoher Reibung in Flüssigkeiten gilt eigentlich, dass symmetrische Bewegungen, wie eben das gleichförmige Öffnen und Schließen einer Muschelschale, unter dem Strich kein Fortkommen bewirken. Das Vor und Zurück durch die jeweils gegensätzlichen Bewegungen heben sich schlicht auf.

In Wasser wäre die Mikromuschel aus diesem Grund in der Tat nicht vom Fleck gekommen. Doch weil die Forscher langfristig den Einsatz in biologischen Medien im Auge haben, testeten sie ihren Schwimmer direkt auch in dafür geeigneten Modellflüssigkeiten. Und die weisen im Gegensatz zu Wasser Besonderheiten auf. „Die meisten Körperflüssigkeiten haben die Eigenschaft, dass sich ihre Viskosität je nach Bewegungsgeschwindigkeit ändert“, sagt Fischer. „In Gelenkflüssigkeit zum Beispiel ordnen sich Hyaluronsäure-Moleküle im Ruhezustand zu netzwerkartigen Strukturen an, die für eine hohe Viskosität sorgen. Doch sobald sich etwas durch diese Flüssigkeit bewegt, bricht das Netzwerk auf – und das Fluid wird dünnflüssiger.“

Eine magnetische Steuerung öffnet und schließt die Muschel

Genau dieses Verhalten machten sich die Wissenschaftler bei ihrer Muschel zunutze. Konkret steuerten sie die Muschelschalen so, dass sie sich sehr viel schneller öffnen als schließen. „Dieses zeitlich asymmetrische Bewegungsmuster führt dazu, dass die Flüssigkeit während des Öffnens dünnflüssiger ist als beim anschließenden Schließen“, sagt Doktorand Tian Qiu vom Stuttgarter Team. Damit ist die Distanz, die die Muschel beim Öffnen zurücklegt, auch eine andere als die, um die sie sich beim Schließen wieder zurückbewegt. Netto kommt sie also voran. Es sei das erste Mal überhaupt, dass sich ein künstliches Gebilde dieser Größenordnung mit symmetrischen Bewegungszyklen in Flüssigkeiten fortbewegte, so Tian Qiu.

Um ihren Mikroschwimmer überhaupt derart kontrollieren zu können, arbeiteten sie in der Achse, die das Gelenk zwischen beiden Muschelschalen bildet, magnetische Seltenerdmetalle ein. Über ein von außen angelegtes Magnetfeld regulierten sie dann, wie sich die Muschelschalen öffnen und schließen – letztlich also, wie sie sich fortbewegen. Die Erkenntnis der Stuttgarter Forscher, dass mikroskopische Vehikel durch manche Flüssigkeiten auch mit symmetrischen Bewegungen schwimmen, gilt aber nicht nur für magnetisch angetriebene Tauchfahrzeuge. Vielmehr lässt sich ein Miniatur-U-Boot in Muschelform auch durch andere Aktuatoren bewegen, etwa einen, der auf eine Temperaturveränderung reagiert.

Die eigentliche Muschel bestand aus einem relativ harten Kunststoff. Hier lag die besondere Herausforderung darin, die Muschelschalen einerseits extrem dünn und andererseits robust genug für die „Ruderbewegungen“ in einem vergleichsweise zähen Medium zu gestalten.
Die Wissenschaftler, die ihre Arbeit nun in Nature Communications vorstellten, wollen ihre Mikroschwimmer nun in konkreten biologischen Flüssigkeiten testen. „Uns interessiert im nächsten Schritt zum Beispiel, ob wir diesen Roboter auch durch eine extrazelluläre Matrix, also durch ein Gewebe, steuern können“, so Peer Fischer.

Originalpublikation: Nature Communications, 4 November 2014; DOI: 10.1038/ncomms6119
Quelle: Max-Planck-Gesellschaft, München

>>

Uncategorized // 9. December 2014

Sternstunden der Evolutionsstrategie − ein halbes Jahrhundert Zickzack mit Darwin

Für Bioniker war es ein Doppeljubiläum der besonderen Art: Prof. Dr. Ingo Rechenberg, einer der Bionik-Pioniere und BIOKON-Gründungsmitglied, beging am 20.11.2014 seinen 80. Geburtstag. Gleichzeitig war es der 50. Jahrestag der Vorstellung der Evolutionsstrategie, die von Professor Rechenberg für die Lösung ingenieurtechnischer Herausforderungen entwickelt wurde.  

Am 18. November 1964 titelte der SPIEGEL „Zickzack nach Darwin“. Genau 50 Jahre später referierte Prof. Rechenberg bei einem interdisziplinären Symposium an der Universität Jena, das an sein bahnbrechendes »Darwin-im-Windkanal-Experiment« erinnerte zu den „Sternstunden der Theorie der Evolutionsstrategie“.  

Fünfzig Jahre zurück: Gemeinsam mit seinen damaligen Kommilitonen Peter Bienert und Hans-Paul Schwefel führte der damalige Luftfahrtstudent Ingo Rechenberg an der Technischen Universität Berlin ein Schlüsselexperiment im Windkanal durch. Es ging um die Bestimmung der idealen Form von Flügeltragflächen mit dem geringsten Widerstand mithilfe des Evolutionsprinzips. Rechenberg stellte dieses Experiment dann mit Hilfe der Film-Zeitraffer-Technik auf einer Tagung in Berlin vor – ein wissenschafts- und technikhistorisch bedeutsames Ereignis.  

Hätten die Wissenschaftler die verschiedenen Einstellungen des Flügelprofils systematisch getestet, hätte es Jahre gedauert, die widerstandsärmste Flügelform zu finden. Doch durch die Anwendung von Selektion und Variation benötigten sie nur wenige Tage. Variation und Rekombination sind Konzepte die vor allem aus der Evolutionsbiologie bekannt sind. Bei der Evolutionsstrategie werden diese Prinzipien zur Optimierung technischer Systeme angewendet, um Produkte und Prozesse robust und effizient zu optimieren − auch bei solchen Problemen, bei denen andere Optimierungsverfahren versagen.  

Die Evolutionsstrategie  

Die Anwendungsbandbreite der Evolutionsstrategie reicht von der Optimierung von Prozessabläufen über die Anpassung von subjektiv zu beurteilende Produkteigenschaften und der Erstellung von Vorhersagemodellen von sozialem Verhalten oder der Entwicklung von Finanzmärkten bis hin zur Auslegung von Bauteilen und Großkonstruktionen.  

Die Evolutionsstrategie kann in unterschiedlichen Stadien des Projektverlaufs ohne größeren Aufwand eingesetzt werden, so z.B. in der Anfangsphase zur Ermittlung von Ausgangmodellen, während des Projektes zur Selektion und Identifikation von Prozessparametern und selbstverständlich für die „Hauptoptimierung“ und letztlich auch zur Optimierung des technischen Herstellungsverfahrens für das Ergebnis bzw. Produkt.  

Die Optimierung kann anhand von Computermodellen und Simulationen erfolgen, wie bei Schiffspropellern erfolgreich zur Minimierung des Treibstoffverbrauchs eingesetzt. Auch Optimierungsaufgaben mit verrauschten Zielfunktionen, die also durch externe Einflüsse gestört werden, wie bei Rohrkrümmern zur Reduktion des Druckverlustes, sind lösbar, oder zu optimierende Systeme mit korrelierten Parametern, also voneinander abhängigen Variablen, wie zum Beispiel bei der Modellidentifikation oder beim Regler-Design.  

Sind die Parameterkonstellationen zu komplex, um sie über Formeln abbilden zu können, ist es mit Hilfe der Evolutionsstrategie auch möglich, die Bewertung der einzelnen Entwicklungsschritte auf Grundlage von experimentell ermittelten Messergebnissen vorzunehmen. So wurden beispielsweise Strömungsprofile hinsichtlich der Widerstandsminimierung optimiert. Industrierelevant ist ferner die Optimierung mit subjektiver Bewertung, also die Bewertung durch den Menschen, wenn es zum Beispiel um Sinneswahrnehmung geht und eine Farbe, ein Geräusch oder ein Geschmack verglichen und optimiert werden soll. Ein Beispiel hierfür ist die Optimierung des Designs von Radfelgen nach mechanischen und ästhetischen Kriterien.  

Ingo Rechenberg  

Gemäß des Spruches „Einen Naturvorgang verstehen heißt, ihn in Mechanik zu übersetzen“ (Hermann von Helmholtz) hat Rechenberg schon von frühester Jugend an versucht, Naturphänome bei Saalflugmodellen einzusetzen. Später studierte er Maschinen- und Flugzeugbau. Motiviert durch die Vorlesungen von Johann-Gerhard Helmcke über Evolution, setzt er anfangs alleine und dann mit seiner Arbeitsgruppe evolutionäre Prinzipien zur Lösung technischer Probleme ein.  

Als einer der weltweiten Vorreiter der Bionik, wird Ingo Rechenberg 1972 an den Lehrstuhl „Bionik und Evolutionstechnik“ der TU Berlin berufen. Er ist somit einer der ersten in Deutschland, der Bionik als Wissenschaftsrichtung etabliert hat. Seine Beiträge reichen von der Evolutionsstrategie als ein universelles Optimierungswerkzeug über die Windkraftanlage BERWIAN bis hin zu Projekten zur photobiologischen Wasserstofferzeugung. Sein aktuelles Arbeitsgebiet ist die Umsetzung von biologischen Prinzipien, die er in der Wüste Sahara findet, wie z.B. verschleißarme Oberflächen nach dem Vorbild des Sandfisches, eine „Bionik-Pumpe“, die ohne Mechanik mit Hilfe der Sonnenenergie nach dem Vorbild von Pflanzen Flüssigkeiten transportiert oder die rollende Lokomotion nach dem Vorbild der mittlerweile nach ihm benannten Spinne Cebrennus rechenbergi.  

Bereits seit 1982 begibt sich Rechenberg jährlich mit seinem Expeditionsfahrzeug in die Wüste Erg Chebbi am Rand der Sahara in Südmarokko – seine Begeisterung für die Bionik und speziell das Studieren und Nutzen von Ergebnissen der biologischen Evolution treibt ihn an; eine Begeisterung, die er bis heute in seinen Vorlesungen an der TU Berlin auch an die Studierenden weitergibt.

>>

Uncategorized // 28. October 2014

Internationaler Bionic Award für Entwicklung wasser- und ölabweisender Oberflächen

Der internationale Bionic-Award der Schauenburg-Stiftung geht in diesem Jahr an ein dreiköpfiges, interdisziplinär zusammengesetztes Team vom Leibniz-Institut für Polymerforschung in Dresden. Den mit 10.000 Euro dotierten Nachwuchsforscherpreis erhielten Dr. René Hensel, Dr. Ralf Helbig und Dipl.-Biol. Julia Nickerl für ihre herausragenden Leistungen zur Entwicklung robuster, wasser- und ölabweisender Polymer-Membranen nach dem Vorbild der Hautstrukturen von Springschwänzen.

Die Verleihung durch Marc Schauenburg, Repräsentant der Schauenburg-Stiftung, fand am 24.10.2014 im Rahmen des Bionik-Kongresses „Patente aus der Natur“ in Bremen statt. Der International Bionic-Award der Schauenburg-Stiftung im Stifterverband für die deutsche Wissenschaft wird von der VDI-Gesellschaft Technologies of Life Sciences vergeben.

Das Gewinner-Team aus Sachsen hat im Rahmen ihrer Arbeiten die Morphologie und Chemie der Haut von Springschwänzen (Collembola), kleinen im Boden lebende Insekten, charakterisiert. Dabei wurden die grundlegenden Merkmale der Tiere hinsichtlich Benetzungsverhalten und mechanischer Stabilität in eine künstliche Membran mit bio-inspirierter Oberflächenstrukturierung übertragen. Mithilfe dieses bionischen Ansatzes konnte der Anwendungsbereich wasserabweisender Oberflächen auf verschiedenste Flüssigkeiten erweitert und mit einem langlebigen, mechanisch stabilen Strukturmodell vereint werden.

Die Nachwuchsforscher überzeugten mit dieser Idee die internationale Experten-Jury. „Die ausgezeichnete Arbeit ist eine bahnbrechende Weiterentwicklung des bekannten Lotus-Effekts“, erklärt Jurymitglied und BIOKON-Vorstandsvorsitzende Professorin Antonia Kesel von der Hochschule Bremen. „Die einzigartigen Benetzungseigenschaften der Springschwanzoberfläche ermöglichen die Entwicklung innovativer Materialien mit neuen Einsatzgebieten wie beispielsweise im Arbeitsschutz.“

„Interdisziplinäres Arbeiten und konstruktives Querdenken sind Grundvoraussetzungen in der Bionik und auch für Unternehmen die Basis des Erfolgs“, sagt Marc-Georg Schauenburg, Sohn des Stifters des Bionic Awards. „In diesem Jahr waren besonders viele überzeugende Konzepte dabei.“ So wurde ein Team des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA mit dem zweiten Platz ausgezeichnet. Kiyoharu Nakajima, Kai Tausch, Patrick Maurer und Luis Paulo entwickelten mit SIREXTM einen Pendelhubbohrer für die orthopädische Chirurgie nach dem Vorbild der Holzwespe und könnten damit die Orthopädie und Prothetik revolutionieren. Darüber hinaus wurden Adrian Klein und Hendrik Herzog von der Universität Bonn sowie Harmen Droogendijk von der Universität Twente mit den beiden dritten Plätzen ausgezeichnet.

Save the date: Bewerbungen für den Bionic Award 2016

Im Jahr 2016 wird der International Bionic Award zum fünften Mal vergeben. Anmeldeschluss für Bewerbungen ist 29.02.2016. Die Ausschreibebedingungen und alle relevanten Informationen sind auf der Homepage des International Bionic Awards zu finden.

>>

Forschung // 10. October 2014

Bionisches Auge lässt Blinde wieder sehen

Die kalifornische Firma Second Sight Medical Products hat eine Netzhautprothese entwickelt, bestehend aus einer Brille mit einer Minikamera, einem Mikrochip und Elektroden, die auf die Netzhaut blinder Patienten implantiert werden. Die Brille sendet die Videosignale an einen Mikrochip, welcher die Signale in elektrische Impulse umwandelt und per Drahtlosverbindung direkt an die auf der Retina befindlichen Elektroden weiterleitet. Die Nervenzellen auf der Netzhaut nehmen die Signale als Licht wahr. Das „bionische Auge“ ist unter dem Namen Argus II Retinal Prosthesis System erhältlich. Blinde könnten mit dessen Hilfe wieder sehen und im besten Fall sogar wieder lesen, so Robert Greenberg, CEO von Second Sight Medical Products.

Im Prinzip funktioniert das Implantat wie ein Bypass, der die kranken Zellen umgeht und elektronisch die gesunden Zellen stimuliert. Die Augenprothese bietet so die Möglichkeit, vollkommen erblindeten Patienten mit bestimmten Netzhauterkrankungen eine wirksame Behandlung anzubieten. Mit einem speziellen Training lernen sie, zumindest Teile ihrer Umgebung wieder zu erkennen. Das ist zwar kein normales Sehen, aber eine enorme Steigerung der Lebensqualität und Unabhängigkeit. Die meisten Patienten erhalten immerhin einen Teil ihres Sehvermögens zurück.

Lisa Kulik, die seit 30 Jahren an einer degenerativen Netzhautentzündung (Retinitis pigmentosa) leidet, ist eine der Testpersonen. Das erste, was sie mit dem Mikrochip sehen konnte, war der Vollmond im Himmel, berichtet Kulik bei CNBC Innovation Cities. „Einige Wochen später konnte ich das Feuerwerk am vierten Juli beobachten, das hatte ich schon seit 30 Jahren nicht mehr gesehen.“

Die Weltgesundheitsorganisation WHO schätzt, dass es weltweit rund 285 Millionen Menschen mit Sehbehinderungen gibt, davon sind 39 Millionen blind. Greenberg ist deshalb überzeugt, dass das Potenzial des bionischen Auges riesig ist. Im nächsten Schritt will er mit seinem Team die Technologie weiterentwickeln und ein Implantat direkt im visuellen Bereich des Gehirns platzieren. Das sei die direkte Schnittstelle zur Wiederherstellung des Sehvermögens und unabhängig von der Ursache der Erblindung.

>>

Presse // 26. August 2014

Neuartiges Pflaster ohne Klebstoff

Amerikanische Forscher experimentieren mit einem neu entwickelten Pflaster, das nicht mit Klebstoff beschichtet, sondern mit Hunderten von Mikronadeln aus Kunststoff besetzt ist. Diese dringen in das Gewebe ein, schwellen dort an und haften fest. Das Pflaster schont die Haut und lässt sich leicht wieder entfernen, berichtet die Deutsche Apotheker Zeitung.

Das Vorbild des neuen Pflastertyps ist der Kratzwurm (Pomphorhynchus laevis), ein Fischparasit. Dieser will möglichst lange in seinem „Lebensraum“ bleiben und nicht seinen Wirt verlassen. Deshalb dringt der Wurm mit seinem dünnen „Rüssel“ in die Darmwand ein, wo der Rüssel durch die Einlagerung von Wasser sein Volumen vergrößert und dadurch fest im Gewebe verankert wird.

Während der Kratzwurm nur einen einzigen Anker besitzt, ist das neuartige Pflaster dicht mit Nadeln besät. Sie haben einen Kern aus Polystyren, der seine Form nicht verändert, und eine Spitze aus einem Gemisch von Polystyren und Polyacrylat, das Wasser aufnehmen kann und dabei anschwillt. Sobald die Nadeln ins Gewebe eingedrungen sind, nehmen sie Wasser auf und verankern sich darin.

Krankenhausärzte um Jeffrey Karp in Boston, die das Pflaster entwickelt haben, sehen Anwendungsmöglichkeiten vor allem dort, wo eine sichere Fixierung wichtig ist. Dies ist bei transplantierter Haut – z.B. bei Patienten mit schweren Verbrennungen – der Fall, die derzeit in der Regel durch Klammern fixiert wird. Das Pflaster scheint hier die ideale Alternative zu sein, denn es sitzt fester, beeinträchtigt das Gewebe mitsamt den Nerven und Gefäßen weniger und verringert auch noch das Infektionsrisiko. Zudem lässt sich das Pflaster schonend entfernen, wenn es seine Funktion erfüllt hat.

Nach Meinung seiner Erfinder hat das Pflaster weiteres Potenzial: Die Nadelspitzen könnten mit Arzneistoffen wie Antibiotika oder wundheilungsfördernden Substanzen beladen werden, die dann nicht mehr die Barriere der Hornzellschicht zu durchdringen brauchten, sondern direkt in das lebende Gewebe der Haut gelangen und dort ihre Wirkung entfalten.

>>

Presse // 21. August 2014

Leise wie ein Eulenflügel

Ziehl-Abegg hat im Bereich der Lüftungstechnik für einen neuen Ventilator den Flügel nach dem Vorbild einer Eule geformt. Das Ergebnis: Der Ventilator ist flüsterleise. Zudem wird dieser „bionische Ventilator“ aus einem bio-basiertem Polyamid von Akro-Plastic hergestellt.

Ziehl-Abegg hat die Vorteile der Bionik erkannt und entsprechend in der Formgestaltung ihrer neuen Ventilatorgeneration umgesetzt. Besonders der extrem leise Flug der Eule hat die Entwickler des Unternehmens inspiriert. Ventilatorenflügel mit einer gezackten Hinterkante, wie beim Eulenflügel, sind nun in vielen Bereichen markantes Kennzeichen von Produkten des Künzelsauer Industrieunternehmens. Diese Geometrie nach Vorbild des Eulenflügels reduziert das Geräusch des Ventilators maßgeblich. „Indem wir bionische Erkenntnisse in die Entwicklung unserer Ventilatoren einfließen lassen, stoßen wir in ganz neue Sphären bei Energieeinsparung und Geräuschreduzierung vor“, erklärte Norbert Schuster, Technikvorstand bei Ziehl-Abegg.

Neu ist der Einsatz von nachwachsenden Rohstoffen für die Kunststoffherstellung. „Damit können wir schon bei der Produktion den CO2-Fußabdruck von Ventilatoren deutlich reduzieren“, erklärte Schuster den Prototyp eines bionischen Ventilators aus Bio-Kunststoff.
Als Material für den neuen Axialventilator wählte man das biobasierte Polyamid 6.10 von Akro-Plastic (Akromid S), das die gängige Definition eines Biokunststoffs erfüllt. Es besitzt einen bis zu 70%-igen biogenen Kohlenstoff-Anteil.

Diese extrem leisen und energieeffizienten Ventilatoren werden zukünftig in der Kältetechnik, in Heizungen, Wärmepumpen und zur Elektronikkühlung ihren Einsatz finden. In diesen Bereichen sorgen sie dafür, dass neben einem ressourcenschonenden Werkstoffeinsatz auch die Geräuschemission deutlich reduziert wird. Das umweltfreundliche bionische Konzept von Ziehl-Abegg wurde in verschiedenen Wettbewerben durch Auszeichnungen honoriert.

>>