Signet

BIOKON - Das Bionik-Kompetenznetz

Bionic_Award_2016
v.l.n.r.: L. Vollrath (Vertreter Schauenburg-Stiftung) , M. Pothen (Preisträger), R. Appel (VDI-Direktor und Laudator), P. Comanns (Preisträger), G. Buchberger (Preisträgerin), K. Winands (Preisträger), A. Kesel (BIOKON und HS Bremen).
Bild: Rainer Erb, BIOKON.

Aktuelles // 02. November 2016

Internationaler Bionic Award 2016 für Flüssigkeitstransport nach dem Vorbild der Krötenechse

Der International Bionic Award der Schauenburg-Stiftung geht in diesem Jahr an ein vierköpfiges, interdisziplinär zusammengesetztes Team aus Aachen und Linz. Die mit 10.000 Euro dotierte Auszeichnung erhielten Dr. Philipp Comanns, RWTH Aachen, Kai Winands und Mario Pothen, Fraunhofer-Institut für Produktionstechnologie IPT Aachen, sowie Gerda Buchberger, Johannes Kepler Universität Linz, für ihre herausragende Forschungsarbeit zum Entwicklung von Strukturen, um Flüssigkeiten energieneutral in eine gezielte Richtung auf Oberflächen zu transportieren. Ihr Vorbild: Die texanische Krötenechse.

 

Mit mikroskopisch kleinsten Kanälen sammelt die texanische Krötenechse Wasser aus ihrer Umgebung. Durch ihre Hautstruktur kann sie es gezielt Richtung Maul transportieren. Das interdisziplinäre Team aus Biologe, Ingenieur, Informatiker und Physikerin hat daraus Funktionsprinzipien abgeleitet und auf Kunststoff- und Metalloberflächen übertragen. Die Innovation kann in der Industrie in vielen Bereichen angewendet werden, ob in Windeln oder als Schmierstoff im Automotor.

 

„Das Phänomen beruht auf der besonderen Geometrie der Kapillarkanäle. Durch unsere interdisziplinäre Zusammenarbeit im Team konnten wir diese Kanalgeometrie abstrahieren und die Struktur soweit optimieren, dass eine industrielle Fertigung möglich ist und wir Flüssigkeiten gezielt sogar gegen die Schwerkraft transportieren können.“ erklärt der frisch promovierte Biologe und Sprecher des Nachwuchsforscherteams Dr. Philipp Comanns.

BIOKON-Geschäftsführer Dr. Rainer Erb: „In der internationalen Jury hat uns diese herausragende Arbeit besonders überzeugt. Die Anwendung verspricht ein großes Marktpotenzial in vielen Branchen, da der passive, gerichtete Transport von Flüssigkeiten oder Schmiermitteln bei zahlreichen technischen Prozessen erforderlich ist - wir sind gespannt!“

 

„Interdisziplinäres Arbeiten und konstruktives Querdenken sind Grundvoraussetzungen in der Bionik und auch für Unternehmen die Basis des Erfolgs“, sagt Marc-Georg Schauenburg, Sohn des Stifters des Bionic Awards. „In diesem Jahr waren erneut viele überzeugende Konzepte dabei.“ So wurde zusätzlich ein Team des Karlsruher Instituts für Technologie mit einer Anerkennungsurkunde ausgezeichnet. Maryna Kavalenka, Felix Vüllers und Claudia Zeiger erhielten diese Anerkennung für ihr Projekt „Bioinspired Multifunctional Nanofur for Environmental Applications”.

 

Die Verleihung fand am 21. Oktober 2016 im Rahmen des Bionik-Kongresses „Patente aus der Natur“ in Bremen statt.

Vorstand-2016
Vorstand und Geschäftsführung von BIOKON (v.l.n.r.): William Megill, Michael Herdy, Antonia Kesel, Rainer Erb und Markus Hollermann.

Presse // 25. Oktober 2016

BIOKON mit neuem Vorstand

Turnusgemäß haben die BIOKON-Mitglieder nach drei Jahren ihren neuen Vorstand gewählt. BIOKON-Geschäftsführer Dr. Rainer Erb freut sich, dass im fünfköpfigen Vorstandsteam des interdisziplinären Bionik-Kompetenznetzes auch weiterhin Biologen und Ingenieure, Wissenschaftler und Unternehmensvertreter vertreten sind.

 

Vorstandsvorsitzende ist Frau Professorin Dr. Antonia Kesel von der Hochschule Bremen. Sie hat dieses Amt bereits in den letzten drei Jahren erfolgreich wahrgenommen. In Bremen leitet sie den internationalen Studiengang Bionik und ist Vorsitzende des VDI-Fachbeirates Bionik und stellvertretende Vorsitzende der VDI-Fachgesellschaft Technologies of Life Sciences.

 

Stellvertretender Vorstandsvorsitzender ist Markus Hollermann. Er ist Experte für Bionik und Innovationsmanagement bei Altran Deutschland S.A.S. & Co. KG, dem globalen Marktführer in Innovation und High-Tech Engineering Consulting. Außerdem ist Herr Hollermann Gründer und Geschäftsführer des Start-ups „die Bioniker“.

 

Professor Dr. Ivo Boblan lehrt Elektrotechnik, Aktorik, Robotik und Bionik an der Beuth Hochschule für Technik Berlin. Als Experte für bionische Robotik beschäftigt er sich insbesondere mit nachgiebigen Assistenzsystemen für Anwendungen in der sicheren Mensch-Technik-Interaktion.

 

Professor Dr. Michael Herdy ist Experte für Bionik im Kompetenzbereich Innovationsmanagement und Technology Watch bei der inpro Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH. Er ist Spezialist für bionische Optimierungsmethoden, insbesondere die Evolutionsstrategie, und Honorarprofessor an der Hochschule für Technik und Wirtschaft Berlin.

 

Professor Dr. William Megill ist sowohl Ingenieur als auch Biologe. Mit seinem Team und seinen Studierenden an der Hochschule Rhein-Waal entwickelt und baut er Antriebssysteme und Sensoren, für kleine U-Boote und Boote. Unter seiner Leitung nimmt das U-Boot-Team der Hochschule an internationalen Wettbewerben teil.

Dreiarmige_Faserverbundverzweigung_
Dreiarmige Faserverbundverzweigung geflochten aus Karbonfasern mit Faseranordnungen im Verzeigungsberiech nach dem Vorbild der Verzweigungen des Drachenbaums.

Forschung // 24. Oktober 2016

Gold Award 2016 in der Kategorie Surface and Technology für die bionische Dreifachverzweigung

Der Technologiedemonstrator einer bionischen Dreifachverzweigung wurde mit dem „Materialica Design&Technology Gold Award“ in der Kategorie „Surface and Technology“ ausgezeichnet. Die dreiarmigen Faserverbundverzweigung wurde in einem neuartigen Flecht-Infiltrations-Verfahren hergestellt, bei dem erstmals die patentierte Technik eines variablen Flechtauges zum Einsatz gekommen ist (Patent Nr. DE 102011006647 B4). Für die Verzweigungsstruktur dienten unter anderem der Drachenbaum (Dracaena marginata) und der Corryokaktus (Corryocactus brachypetalus) als natürliche Vorbilder. Diese Struktur kann als Technologieplattform für Verzweigungselemente in zahlreichen Anwendungsgebieten wie Luft- und Raumfahrbereich, Fahrzeug- und Maschinenbau sowie Architektur und Bauwesen genutzt werden.

 

Ausgezeichnet wurden Prof. Thomas Speck & Dr. Tom Masselter (Plant Biomechanics Group (PBG) & Botanischer Garten, Universität Freiburg), Prof. Markus Milwich (Hochschule Reutlingen & ITV Denkendorf), Dr. Simon Küppers & Dipl.-Ing. Lena Müller (Institut für Textil- und Verfahrenstechnik (ITV) Denkendorf), Prof. Christoph Neinhuis (Institut für Botanik und Botanischer Garten, TU Dresden) sowie Prof. Maik Gude & Dipl.-Ing. Andreas Gruhl (Institut für Leichtbau und Kunststofftechnik (ILK), Technische Universität Dresden) für ihre Entwicklung einer dreiarmigen Faserverbundverzweigung nach dem Vorbild der Verzweigungen des Drachenbaums.

 

Inspiriert wurde die Entwicklung durch die Form und die innere Struktur der Verzweigungen des Drachenbaums. Hierbei haben vor allem die Anordnung und der Verlauf der von mechanisch sehr stabilen, verholzten Faserbündeln begleiteten Leitgewebebündel im Bereich der Astanbindung die bionische Umsetzung beeinflusst. Diese Faserbündel zeigen eine lastadaptierte Anordnung und die in den Seitenast führenden Bündel umfassen vor ihrer Abzweigung den Hauptstamm typischer Weise um über 180°. Durch diese innere Struktur können die Seitenäste des Drachenbaums hohe Biegelasten aufnehmen und zeigen im Versagensfall ein gutmütiges Bruchverhalten. Hierbei kommt es zu mehreren Vorversagensereignissen, nach denen sich das System jeweils wieder stabilisiert, wodurch bis zum finalen Versagen große Energiemengen absorbiert werden können („Fail-Safe-Mechanismus“). All diese Eigenschaften, die in der Plant Biomechanics Group Freiburg untersucht wurden, und die ausgeprägte Fasermatrixstruktur des Drachenbaums machten diese Pflanzen zu einem idealen Ideengeber für die Entwicklung einfach und mehrfach verzweigter Faserverbundstrukturen.

 

Bei der Entwicklung des Geflechts und des Flechtverfahrens im ITV Denkendorf und im ILK der TU Dresden wurde nicht nur Wert auf einen optimal kraftflussgerechten Faserverlauf im Zwickel des Geflechts gelegt. Ziel war es darüber hinaus, ein Geflecht zu entwickeln, bei dem es möglich ist für die Verzweigungsäste in Summe mehr Fäden verwenden zu können, als im Hauptast vorhanden sind, ohne offene Faserenden im Bauteil zu haben. Diese hat den Vorteil Strukturen zu erzeugen, bei denen es einen durchgehenden Hauptpfad gibt von dem, ohne das Bauteil durch das Reduzieren der Faseranzahl im Hauptpfad bzw. durch offene Faserenden von hinzugefügten Fäden zu schwächen. Bei hinzugefügten Fäden würde es außerdem zu einer lokalen Überdimensionierung der Verzweigung kommen. Das Verfahren wurde zum Patent angemeldet (DE 102013223154 A1). Die potentiellen Anwendungsbereiche einer solchen verzweigten, geflochtenen Struktur sind vielfältig und umfassen beispielsweise Fahrzeug- und Maschinenbau, Luft- und Raumfahrt, sowie Architektur und Bauwesen – hier z.B. ausgegossen mit Leichtbauzement.

Dracaena
Die dreidimensionale Abbildung der äußeren Form (links) sowie des gesamten Leitbündelsystems (rechts) der Ast-Stamm-Anbindung im Drachenbaum zeigt, welche Teile sich Pflanze im belasteten Zustand (gelb) im Vergleich zum unbelasteten (rot) verschieben.

Forschung // 15. September 2016

Vom Drachenbaum zum Werkstoff

Drachenbäume als Ideengeber für den Leichtbau: Ein Forschungsteam der Universität Freiburg und des Karlsruher Instituts für Technologie (KIT) hat die Grundlagen dafür erarbeitet, technische Faserverbundverzweigungen nach dem Vorbild von Ast-Stamm-Anbindungen zu entwerfen. Mithilfe von hochauflösenden Magnetresonanz-Bildgebungsverfahren ist es den Wissenschaftlerinnen und Wissenschaftlern dabei erstmals gelungen, am lebenden Drachenbaum zu beobachten, wie sich das pflanzliche Gewebe bei Belastung verschiebt. Technische Faserverbundverzweigungen, die sich ähnlich verhalten wie das natürliche Vorbild, könnten künftig zum Beispiel in architektonischen Tragwerken, Fahrradrahmen oder in Autokarosserien zum Einsatz kommen. Das Team hat die Ergebnisse in der Fachzeitschrift „Scientific Reports“ veröffentlicht.  

 

Für die Studie haben die Arbeitsgruppen von Prof. Dr. Thomas Speck, Leiter der Plant Biomechanics Group und Direktor des Botanischen Gartens der Universität Freiburg, und Prof. Dr. Jan G. Korvink, Leiter des Instituts für Mikrostrukturtechnik am KIT, einen neuartigen Versuchsaufbau entwickelt. Die Biologin Linnea Hesse von der Universität Freiburg und der Medizinphysiker Dr. Jochen Leipold von der Klinik für Radiologie – Medizinphysik des Universitätsklinikums Freiburg bildeten zunächst mithilfe eines Magnetresonanztomographen (MRT) das Innere von Stamm und Ast eines Drachenbaums im unbelasteten Zustand ab. Anschließend belasteten sie den Ast, indem sie ihn mittels eines mechanischen, von außerhalb des MRT gesteuerten Arms verbogen, und bildeten die inneren Strukturen der Pflanze erneut ab. Aus beiden Bildersätzen erstellten die Wissenschaftler dreidimensionale Computermodelle. Anhand dieser konnten sie vergleichen, wie sich das Gewebe, das eine Pflanze stabilisiert, jeweils verhält und wie es sich bei Belastung verschiebt: einerseits die Leitbündel, die Stoffe und Flüssigkeiten innerhalb von Pflanzen transportieren, und andererseits die Faserkappen, die diese Leitbündel umgeben und festigen. Dabei betrachteten die Wissenschaftler sowohl die gesamte Ast-Stamm-Anbindung als auch einzelne Leitbündel, um Veränderungen vom unbelasteten zum belasteten Zustand möglichst genau zu ergründen. Je nach ihrer Lage in der Verzweigung werden die Bündel und die Kappen teilweise längs gedehnt und können so Zuglasten aufnehmen oder auch quer gegen das umliegende Gewebe gedrückt, um Druckkräfte abzudämpfen.  

 

Auf dieser Basis ist es nun möglich, die wissenschaftlichen Erkenntnisse in technische Faserverbundverzweigungen zu übertragen – mit dem Ziel, sowohl leichte als auch stabile Werkstoffe mithilfe des natürlichen Vorbilds noch weiter zu verbessern.  

 

Originalveröffentlichung: Hesse, L., Masselter, T., Leupold, J., Spengler, N., Speck, T., Korvink, J.G.: Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. Sci. Rep. 6, 32685; doi: 10.1038/srep32685 (2016).  

 

Quelle: Presseinformation der Universität Freiburg.

2016_097_Flower_Power_-_Photovoltaik_nach_dem_Vorbild_der_Rose
Die Epidermis eines Rosenblütenblatts wird in einer transparenten Schicht nachgebildet; diese wird in die Vorderseite einer Solarzelle integriert.
Quelle: Guillaume Gomard, Karlsruher Institut für Technologie (KIT).

Forschung // 02. Juli 2016

„Flower Power“: Photovoltaik nach dem Vorbild der Rose

Mit einer Oberfläche wie bei Pflanzen können Solarzellen mehr Licht aufnehmen und damit mehr Strom erzeugen. Forscher des Karlsruher Instituts für Technologie (KIT) reproduzierten die epidermalen Zellen von Rosenblütenblättern, die eine besonders starke Antireflexwirkung besitzen, und integrierten die transparente Nachbildung in eine organische Solarzelle. Dies führte zu einer relativen Erhöhung der Effizienz von zwölf Prozent. Darüber berichten die Wissenschaftler in der Zeitschrift Advanced Optical Materials (DOI: 10.1002/adom.201600046).

 

Photovoltaik ähnelt im Prinzip der von Pflanzen betriebenen Photosynthese: Lichtenergie wird absorbiert und in eine andere Form von Energie konvertiert. Dabei ist es wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkeln aufzunehmen, da sich der Winkel mit dem Sonnenstand ändert. Pflanzen haben dies in ihrer langen Evolution erreicht – Grund genug für Photovoltaikforscher, sich bei der Entwicklung von Solarzellen mit breitem Absorptionsspektrum und hoher Einfallswinkeltoleranz an der Natur zu orientieren.

 

Wissenschaftler am KIT und am Zentrum für Sonnenenergie­ und Wasserstoff-Forschung Baden­Württemberg (ZSW) schlagen nun in der Zeitschrift Advanced Optical Materials vor, das äußere Abschlussgewebe von Blättern höherer Pflanzen, die sogenannte Epidermis, in einer transparenten Schicht nachzubilden und diese in die Vorderseite von Solarzellen zu integrieren, um deren Effizienz zu steigern.

 

Zunächst untersuchten die Forscher am Lichttechnischen Institut (LTI), Institut für Mikrostrukturtechnik (IMT), Institut für Angewandte Physik (APH) und Zoologischen Institut (ZOO) des KIT sowie am ZSW die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und vor allem ihre Antireflexwirkung. Diese erwies sich als besonders stark bei Rosenblütenblättern, bei denen sie für stärkere Farbkontraste sorgt und damit die Chance auf Bestäubung erhöht. Wie die Wissenschaftler unter dem Elektronenmikroskop feststellten, besteht die Epidermis der Rosenblütenblätter aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen, zusätzlich gerippt durch zufällig platzierte Nanostrukturen.

 

Um die Struktur dieser epidermalen Zellen über eine größere Fläche exakt zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan, einem Polymer auf Siliziumbasis, drückten die so entstandene negative Struktur in einen optischen Kleber ein und ließen diesen unter UV-Betrahlung aushärten. „Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am LTI des KIT.

 

Die Wissenschaftler integrierten die transparente Nachbildung der Rosenblütenblätter-Epidermis in eine organische Solarzelle. Dadurch erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent (relative Steigerung). Bei sehr flachen Einfallswinkeln fiel die Effizienzsteigerung noch höher aus. Die Forscher führen die Steigerung vor allem auf die hervorragende richtungsunabhängige Antireflexwirkung der nachgebildeten Epidermis zurück. Diese kann die Oberflächenreflexion unter fünf Prozent halten, auch wenn der Lichteinfallswinkel fast 80 Grad beträgt. Darüber hinaus fungiert jede einzelne der nachgebildeten epidermalen Zellen als Mikrolinse, wie Untersuchungen mit einem Konfokal-Lasermikroskop zeigten. Der Mikrolinseneffekt verlängert den optischen Pfad innerhalb der Solarzelle, steigert die Licht-Materie-Interaktion und erhöht die Wahrscheinlichkeit, dass die Lichtteilchen absorbiert werden.

 

„Unsere Methode lässt sich sowohl auf weitere Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehrere Eigenschaften in einem Schritt zu übernehmen.“ Die Arbeit der Forscher wirft darüber hinaus eine grundlegende Frage auf: Welche Rolle spielt Unordnung in komplexen photonischen Strukturen? Zu dieser Frage laufen weitere Untersuchungen, von deren Ergebnissen die nächste Generation von Solarzellen profitieren könnte.

 

Originalpublikation:

Ruben Hünig, Adrian Mertens, Moritz Stephan, Alexander Schulz, Benjamin Richter, Michael Hetterich, Michael Powalla, Uli Lemmer, Alexander Colsmann, and Guillaume Gomard: Flower Power: Exploiting Plants’ Epidermal Structures for Enhanced Light Harvesting in Thin-Film Solar Cells. Advanced Optical Materials, 2016. DOI: 10.1002/adom.201600046

 

Quelle: Presseinformation 097/2016 des KIT.

Dr. Rainer Erb und Jessica Rudolph

Kontakt

Geschäftsstelle

BIOKON - Bionik-Kompetenznetz

 

Dr. Rainer Erb | Geschäftsführer

Jessica Rudolph | Assistentin des Geschäftsführers

 

Ackerstraße 76

13355 Berlin 

Tel. +49.(0)30.46 06 84 84

E-Mail: kontakt@biokon.de